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Background

 Two branches in the study of filter design
 Design of the frequency response (actual values of 

h[n]) – discussed in the next chapter
 Design of the structure

 Structure discusses the realization/implementation of digital 
filters/systems

 Different structures have different advantages and 
disadvantages
 Number of delay elements
 Robustness toward quantization noise
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Block Diagram and Signal Flow Graph
Block diagram Signal flow graph

Adder

Scalar (mult. by a 
constant)

Unit delay

x1

x2

y x1

x2

y

x ya x ya

x[n] x[n-1]z-1 x[n] x[n-1]z-1

• Nodes and branches are keys in a signal flow graph

Source node: No entering branches

Sink node: Only entering branches
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Basic Structures for IIR Systems: Direct 
Form I (Block Diagram)
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Structures for IIR Systems: Direct Form I 
(Signal Flow Graph)
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Structures for IIR Systems: Direct Form II (Block 
Diagram)

• Interchange 1st and 2nd segments and merge the delay lines (z-1)

• Number of delay = max(N,M)
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Structures for IIR Systems: Direct Form II (Signal 
Flow Graph)
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Cascade Form
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Parallel Form
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Feedback In IIR Systems

 Basic formula of a feedback system 
with negative feedback

 If a system has non-zero poles, a 
corresponding block diagram or signal 
flow graph will have feedback loops
 But neither poles in the system function 

nor loops in the network are sufficient for 
the impulse response to be infinitely long 
because zero/pole cancellation may occur

 A delay element is necessary in the 
feedback loop, otherwise, it is 
noncomputable.
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Transpose Forms

 Transposition of a flow graph is reversing the directions of all branches in the 
network while keeping the branch transmittances (as they were) and reversing the 
roles of the input and output (so that source nodes become sink nodes and vice 
versa).

 Flow Graph Reversal Theorem
 For single-input, single-output systems, the transposed flow graph has the same system 

function as the original graph if the input nodes and output nodes are interchanged. 
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Basic Structures for FIR Systems: Direct 
Form
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Basic Structures for FIR Systems: Cascade 
Form
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Linear Phase FIR Filters
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Linear Phase FIR Filters
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Linear Phase FIR Filters

 Instead of M multipliers, we can reduce the number of computations by 
taking advantage of the linear phase property (note that we do not 
include multiplication by -1 as this can be implemented by a flipping 
bits, e.g. flipping signed bit for one’s complement)
 Type-I: only need M/2+1 multipliers
 Type-II: only (M+1)/2 multipliers
 Type-III: only M/2 multipliers
 Type-IV: only (M+1)/2 multipliers

 Linear-phase FIR filters can also be implemented as a cascade of 1st-
order, 2nd-order, and 4th-order real-coefficient systems. (The 4th-order 
system is formed by grouping the conjugate and the reciprocal zeros 
together.)
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Linear Phase FIR Filters

 Linear-phase FIR filters can also be 
implemented as a cascade of 1st-order, 
2nd-order, and 4th-order real-coefficient
systems. (The 4th-order system is 
formed by grouping the conjugate and 
the conjugate reciprocal zeros together.)

 This representation suggests a cascade 
structure consisting of linear-phase 
elements.  The order of the system is 
M=9, and number of different 
coefficient multipliers is (M+1)/2 = 5
(for Type-II and IV).  This is the same 
number as seen in Figure 6.34 when 
Direct Form I is used.
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Effects of  Coefficient Quantization (IIR 
Systems)
 Effects depend on the filter structure
 Want to demonstrate the sensitivity of the filter frequency response 

characteristics to quantization of the filter coefficients is minimized by 
realizing a filter having a large number of poles and zeros as an 
interconnection of 2nd-order filter sections.

 For Direct Form:

 Note that quantization error in a given coefficient affects all the poles of
the system function.

 Suppose that the poles are all first order and they are located at z = zi, 
for i = 1, 2, …, N.
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Effect On Pole Locations

 This will affect the frequency response and stability
 Consider the denominator of an unquantized and quantized rational system function

 ∆zi is the error or perturbation of the ith pole resulting from the quantization of the filter coefficients.  
The perturbation error ∆zi can be expressed in terms of the errors in the coefficient as

where ∂zi/∂ak represents the incremental change in the pole zi due to a change in the coefficient ak.  
In other words, ∂zi/∂ak is the sensitivity of the pole location to quantization of ak.  The total error ∆zi
is expressed as a sum of the incremental errors due to changes in each of the coefficients {ak}.

Remark: This formula is approximately true when ∆ak and ∆zk are small. 
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Effects of  Pole Locations
The partial derivative ∂zi/∂ak, k = 1, 2, …, N, can be obtained by differentiating A(z)
with respect to each of the {ak}.
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Effects On Pole Locations

 That is, if (zi-zj) is small, then ∂zi/∂ak is large, which contributes to large errors
and hence a large perturbation error ∆zi results. For example, in narrowband
filter, the lengths |zi - zj| are small for poles in the vicinity of zi. This problem
can be alleviated if we implement high-order filter with either single-pole (and
single-zero) filter sections. To avoid complex-valued arithmetic, the complex
poles/zeros are combined with their conjugates to form 2nd-order sections.
These conjugates pairs are usually sufficiently far apart, thus, {∆zi} is
minimized.

 Remark: The preceding analysis can be derived for the sensitivity of the zeros 
to the quantization errors in bk’s.
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Mitigation Effects of  Quantization Noise: 
Parallel and Cascade Forms
 Mainly consists of 1st and 2nd order sections to 

avoid complex-valued multiplications
 Errors in a particular pole pairs (section) are 

independent of the other poles (sections). This is 
also true for zeros in cascade form.  In general, 
both the cascade form and the parallel form are 
less sensitive to coefficient quantization (because 
zeros are often widely distributed the unit circle). 
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Example: Bandpass IIR Elliptic Filter

 Coefficients in Table 6.1 were computed with 32-bit floating point 
(defined as “unquantized”).  The table gives the coefficients of the six 
2nd order sections, i.e. 

and N is the total number of poles
 To show the effects of quantization, Table 6.2 shows the coefficients in 

Table 6.1 quantized using 16-bit accuracy using fixed-point 
representation.  The fixed-point coefficients are shown as a decimal 
integer times a power of 2 scale factor.  The binary representation 
would be obtained by converting the decimal integer to a binary 
number.  The scale factor would be represented only implicitly in the 
data shifts that would be necessary to line up the binary points of 
products prior to addition to other products.  Note that the binary points 
of the coefficients are not all in the same location. 
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Example: Bandpass IIR Elliptic Filter

 For example, all the coefficients with scale factor 2-15 have their binary points as
b0 ◊ b1 b2 b3 … bB,

where B+1 is the total number of bits, b0 is the sign bit, and b1 is the highest fractional
bit. This is commonly known as Q15 format. Converting coefficient a11 in Table 6.2 to
binary, we have (b0 here is implied to be 0)

24196  0.101111010000100
where the decimal point is on the left side of leftmost ‘1’. Thus, representing this as a
decimal value

For coefficients in Table 6.1 whose values do not exceed 0.5, we can represent them
using the Q16 format, i.e. scale factor is 2-16, where the binary points is located in front
of b0, i.e.

◊ b0 b1b2 b3 … bB.
For example, the integer part (and the binary equivalent) of coefficient b02 in Table 6.2 is

18278  .0100011101100110.
Thus, representing this as a decimal value 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 3 4 5 6 8 131 2 1 2 1 2 1 2 1 2 1 2 1 2 0.7384− − − − − − −× + × + × + × + × + × + × =

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 6 7 8 10 11 14 151 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 0.2789− − − − − − − −× + × + × + × + × + × + × + × =
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Example: Bandpass IIR Elliptic Filter

 But for coefficients whose value exceeds 1 but less than 2, then we must move the
decimal point one place to the right, i.e. between b1 and b2

b0 b1 ◊ b2 b3 … bB,

For example, a16 the integer part (and the binary equivalent) of coefficient b02 in Table
6.2 is

19220  01.00101100010100.
Thus, representing this as a decimal value 

 Use of different binary locations retains greater accuracy in the coefficients, but it
complicates the programming or system architecture

( ) ( ) ( ) ( ) ( ) ( )0 3 5 6 10 121 2 1 2 1 2 1 2 1 2 1 2 1.1731− − − − −× + × + × + × + × + × =
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Example: Bandpass IIR Elliptic Filter

 We can see that if Direct Form I structure is used, as in Figure 6.47e, quantization has destroyed the frequency response of 
the system since it is more sensitive to quantization error than either cascade form (Figure 6.47c) or parallel form (Figure 
6.47d).

12
1 5 6 7 11 12 14 16

29131 .1000111000110101
1 2 2 2 2 2 2 2 2 0.4445037842

b
− − − − − − − −

= − ⇒

− + + + + + + + + = −

Hidden zero 
after decimal

16
1 2 3 9 11 12 14

18387 10.11100000101101
2 2 2 2 2 2 2 2 1.122253418

b
− − − − − − −

= − ⇒

− + + + + + + + = −

One’s complement (flip all bits)

One’s complement (flip all bits)
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Coefficient Quantization in FIR Systems

and                      is a new set of coefficients obtained if 
the coefficients h[n] has been quantized  and {∆h[n]} are 
the quantization error samples of {h[n]}

 Effect on the zero locations
 The sensitivity function of this form is similar to that of the direct 

form I IIR filter. That is, if the zeros are tightly clustered, their 
locations will then be highly sensitive to quantization errors. 
However, for most linear phase FIR systems, the zeros are more 
or less uniformly spread on the z-plane. 
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Effect on H(ejω)

 After scaling (all coefficients < 1), each h[n] is represented by (B+1) bits 2’s 
complement number; i.e. -2-(B+1) < ∆h[n] ≤ 2-(B+1)

 This gives us the (pessimistic) error bounds for different quantized systems.
For M+1 = 28: 16-bit: 0.000427; 14-bit: 0.001709; 13-bit: 0.003418; 8-bit:
0.109375.

 It’s pessimistic because if we look at Figures 6.46c – 6.46f, we will see that the 
approximation error is always less than what the bound provides.  To reach the 
bound, the quantization errors would have to be of the same sign and equal to 
the maximum value 

 Note that there will no effect on the linear phase property as long as 
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Example: Linear Phase Lowpass Filter
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From Figure 6.46, we see that using 
13-bit quantization, the stopband 
approximation error becomes larger 
than -60dB.  And using 8-bit 
quantization, the stopband 
approximation error becomes 10 times 
as large as what is specified.  So, we 
need at least 14-bit coefficients in 
order to meet the design specifications 
using Direct Form I.  This is also 
reflected in the pole-zero diagram in 
Figure 6.47.  The zero location is 
hardly affected in the 16-bit case.  
However, the zeros location have 
moved significantly in the 13-bit case 
(and lower), thus affected the 
frequency response in the passband 
and stopband
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Cascade Form For Linear Phase FIR 
Filters
 less sensitive than Direct Form I because it isolates the quantization errors 

from the other sections
 To preserve linear phase, each section has to have linear phase

 (1+az-1+z-2): this 2nd order section would contain complex conjugate pair of zeros 
on the unit circle, so the zeros can move only on the unit circle when a is quantized 
 prevents zeros from moving away on the unit circle as in Figure 6.47c.

 Same 2nd order section can also be used for real zeros inside the unit circle and its 
reciprocal (outside the unit circle) so that the zeros would remain real

 zeros at ±1 can be realized by first-order systems
 If a 2nd order section is used to implement a pair of complex-conjugate zeros inside 

the unit circle instead of a 4th-order system (since there are a total of 4 zeros which 
we need to take care of due to the fact that zeros for linear-phase FIR systems occur 
as reciprocal pairs), then to ensure that linear-phase property is preserved, we can 
factorize 4th order system as  

( ) ( )1 2 3 4 1 2 2 2 1 2
2

11 1 2 cos 2 cos

1where the zeros are at:     and  j j

cz dz cz z r z r z r r z z
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z re z e
r

θ θ

θ θ− − − − − − − −

−

+ + + + = − + − +

= =



EEEC20034: Intro. to Digital Signal 
Processing 34

Cascade Form For Linear Phase FIR 
Filters

so that the system uses the same coefficients, namely, -
2rcos θ and r2, to realize both the zeros inside the unit 
circle and the conjugate reciprocal zeros outside the unit 
circle.  Therefore, linear phase condition is preserved 
under quantization.
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