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Background

Two branches in the study of filter design

o Design of the frequency response (actual values of
n[n]) — discussed in the next chapter

o Design of the structure

Structure discusses the realization/implementation of digital
filters/systems

Different structures have different advantages and
disadvantages

0 Number of delay elements

0 Robustness toward quantization noise
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Block Diagram and Signal Flow Graph

Block diagram Signal flow graph
Adder % ’%D >y X10—>I—>©y
X2 X2
Scalar (mult. by a
constant) X iy Xo—&—o y
Unit delay A —] 21 s xin-1] | x[n]o 51 ox[n-1]

» Nodes and branches are keys in a signal flow graph
Source node: No entering branches

Sink node: Only entering branches
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Basic Structures for IIR Systems: Direct
Form I (Block Diagram)

H (z) =t <:>y[n]—gaky[n—k]zibkx[n—k]

1—ZN:akz"‘

CRNC RO e RO YO S i
Y(Z):Hz(Z)V(Z)<—>y[n]—kiaky(n—k)zv[n] xln - yln-1]
K@)

V(z)=H,(2)X (2) o v[n] = b(n-K e : yln-2)
V(z)=gbkx(k)z : - -
Y(2)-YaY(2)2* =V (2) el S LY TN

Figure 6.3 Block diagram

k
~ representation for a general Nth-order
=Y(z)=V(2)+>.aY(z)z* difference equation.
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‘ Structures for IIR Systems: Direct Form I
(Signal Flow Graph)

by vn|
Oo——20 > O - -
x[n]
-1
i
by a
x[n—1] » -

Y.
A

N-1 /-1
x[p—N+1] > - yln-N+1]
-3_1 z—l
b ay
x|[n—N]| > <

y[n—N]
Figure 6.14 Signal flow graph of direct form | structure for an N'th-order system.
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Structures for IIR Systems: Direct Form II (Block

Diagram)

« Interchange 15t and 2" segments and merge the delay lines (z'1)

* Number of delay = max(N,M)

N win] by~

(Y

<+><—a¢1— wln-1] —E:I—l-<+>

G)—*i_l— wln-N+1] —l—l'-GD

™M

dpr b
f wn - N]| N

o

Figure 6.4 Rearrangement of block
diagram of Figure 6.3. We assume for
convenience that N = M. If V = M,
some of the coefficients will be zero.
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Figure 6.5 Combination of delays in

Figure 6.4.



Structures for 1IR Systems: Direct Form II (Signal
Flow Graph)

wn| by
o—> o > O >
x|n] 1 y|n]
Z
@ by
-
s by
: 1 .
| | |
| | I
I I '
I Ay _q i b _1 '
-
{I:l.,'.' b:l,'n'

Figure 6.15 Signal flow graph of
direct form Il structure for an
Nth-order system.
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Cascade Form

Serial connection of 1 order and 2™ order factors
N, -1 -2
H(Z):]‘_[bok_'_blk%1 +bZkZ—2
k=1 1_a1kz — a7
Remark : Each factorisa Direct Form Il (2N, = N)

wi[n] ! [n] wan| ya|n] ws|n| yin]
I
Y bc‘l / ~ \ 02 j" R \‘« b(}_’: ! o
x[n] -1 1 y[n]
& A 4 Y«
s bys a3 bys
i - = {
2:_1 1 z‘l
ay by drz b3

Figure 6.18 Cascade structure for a sixth-order system with a direct form |l
realization of each second-order subsystem.

If there are N, second-order sections, there are N, ! pairings of the poles with zeros and N, ! orderings of the
resulting 2™ -order sections

= (N, !)2 different pairings and orderings

N, -1 -2
R Hbok +by 2 +b, 2
-1 -2
k=1 1_a1kz —ayZ

N N -1 - -2
rl+b, 27 +b, 2 - : ~ Db
o bJ] Dy ——2—— needs 4 constant multipliers for each section, where b, =—*
al-ayZ " —a,z

0k

needs 5 constant multipliers for each section
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‘ Parallel Form

Parallel connection of 1% and 2" order factors (N, =| (N +1)/2 |)

N, N -1
S e, +¢6,7
_ -k ok 1k
H (Z) - ZCkZ + 1 -1 -2
k=0 ket L~y Z  —ayZ
Cy

-

wiln] ey wln]

Cr——r -
1
apy ey
-
Iy
-
waln] ey, y2lnl
< ) — o
xln] B ¥l
z
3 €12
1
ap
0
wiln] e walnl
Lo -
|
a3 €13
|
s
0

Figure 6.20 Parallel-form structure for sixth-order system (M = N = 6) with
the real and complex poles grouped in pairs.
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Feedback In IIR Systems

- .T[Jr] ” AN ” ¥ [ndj
Basic formula of a feedback system R T
with negative feedback y[n]=ay[n-1]+x[n]

(a)
HZ)=— &) 1
1+ F(z)B(2) — > o + o » o , 4
x[n] ' | vln]
X[”]—V?:V F(2) :|—> y[n] \ o x
— B@) A

If a system has non-zero poles, a 3
corresponding block diagram or signal \
flow graph will have feedback loops (b)
o But neither poles in the system function eg H(z- LBt R) Al 77 (raztieazt) o o

nor loops in the network are sufficient for b b

the impulse response to be infinitely long

because zero/pole cancellation may occur Tl 'f'\ AR

- - . /{ E

A delay element is necessary in the e y[n] = ay[n]+ x[n]
feedback loop, otherwise, it is ©
noncom pUtab I €. Figure 6.23 (a) System with feedback

loop. (b) FIR system with feedback loop.
(c) Noncomputable system.
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Transpose Forms

Transposition of a flow graph is reversing the directions of all branches in the

network while keeping the branch transmittances (as they were) and reversing the

roles of the input and output (so that source nodes become sink nodes and vice

versa).

Flow Graph Reversal Theorem
o For single-input, single-output systems, the transposed flow graph has the same system

function as the original graph if the input nodes and output nodes are interchanged.

EEEC20034: Intro. to Digital Signal
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Figure 6.27 Direct form Il structure for Example 6.8.
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Figure 6.28 Transposed direct form |1 structure for Example 6.8.
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Basic Structures for FIR Systems: Direct
Form

Transversal filter or tapped delay line

y[n]= ibkx[n —k] (M is the order)

| !
o o > > o

x[n]

h|0] h|1] h|2] hM-1] T1h[M]

= _—— > - O

Figure 6.31 Direct-form realization of
an FIR system.

Z_l Z_l Z_l Z_l
h[M] nM-1] Ah[M-2] 2] 1] o]

x[n]

Figure 6.32 Transposition of the network of Figure 6.31.
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Basic Structures for FIR Systems: Cascade
Form

Serial connection of 1 and 2™ order factors

MS
H(z)=]](by +byz " +byz?)  (Each factor is a Direct Form)
k=1
by by I"r;:,ws
o— > o—>—0 > Or———————— —0——>———0——0
x[n] y[n]
1y 4 1y ! E | A
by bia b
O——0 4 o ] o— 0
Ll ) 3—1 ¥ ] z—l ¥ A
bll bgz bl’lrfs
o > O - o S —

Figure 6.33 Cascade-form realization of an FIR system.
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Linear Phase FIR Filters

Take advantage of the symmetry property of the impulse response

h[M —n]=h[n]
h[M —n]=-h[n]
y[n]zih[k]x[n—k] (M is the order of the filter) 2Z_“lh[M —p]x[n—M +p]
Type lor l1l: M is even =g£h[k]x[n—M+p]
& M M &
y[n]= 3 h[k]x[n_k]m[ﬂx[n_?} S h[k]x[n-K]
k=M-p = p=M-Kk ~ 2t
k=M1 o pom-M M, P M M
k:hi oo 2 2 =kz_;h[k](x[n—k]ix[n—M +k])+h[7}x[n—7}

(for Type-I: +x[n—M +k], for Type-lll: —x[n—M +k])

Type-ll or IV: M is odd

y[n]:gh[k](x[n—k]ix[n—M +k])

(for Type-II: +x[n—M +k], for Type-IV: —x[n—M +Kk])

EEEC20034: Intro. to Digital Signal
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‘ Linear Phase FIR Filters

N S & 2‘1
x[n]
-l - -l
r h[0] Yh([l] Yh(2 Yh[Mi2-1] Yh[M/2)
O - - e —— — — — -
yin] Figure 6.34 Direct-form structure for
an FIR linear-phase system when M is
an even integer.
z! z:l 7!

NN

- o 211
Th[0] 1h(1] Yh(2] Yh{(M=3)2]Th[(M-1)/2]
O - 3 - —— —— — —— .
yln]
Figure 6.35 Direct-form structure for an FIR linear-phase system when M is an
odd integer.
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Linear Phase FIR Filters

Instead of M multipliers, we can reduce the number of computations by
taking advantage of the linear phase property (note that we do not
Include multiplication by -1 as this can be implemented by a flipping
bits, e.g. flipping signed bit for one’s complement)

o Type-I: only need M/2+1 multipliers
o Type-ll: only (M+1)/2 multipliers

o Type-111: only M/2 multipliers

o Type-1V: only (M+1)/2 multipliers

Linear-phase FIR filters can also be implemented as a cascade of 15
order, 2"d-order, and 4"-order real-coefficient systems. (The 4"-order
system is formed by grouping the conjugate and the reciprocal zeros
together.)

EEEC20034: Intro. to Digital Signal

Processing 16



Linear Phase FIR Filters

Linear-phase FIR filters can also be
imdplemented as a cascade of 1%t-order,
2nd-order, and 4™-order real-coefficient
systems. (The 4t-order system is
formed by grouping the conjugate and
the conjugate reciprocal zeros together.)

H(z)= h[O](1+ zfl)(l+ azt + 2*2)(1+ bz + 2*2)(1+ czt+dz?+cz + z*“)
2

1
2, +—

a=22+i, b=2Re{z}, c=—2Re{zl+l}, d=2+
Zl Zl

Z,

This representation suggests a cascade

—————— 2nd order
------ 4 order

-
S
=]
S
\
\
rat
L

#a \
== ’\
(@] Loy
- \
- \
AY
AY
\
il -
1
=
=5}
=
1

-
AY
Fa)

-

&
1=

~

structure consisting of linear-phase
elements. The order of the system is
M=9, and number of different
coefficient multipliers is (M+1)/2 =5
(for Type-Il and 1V). This is the same
number as seen in Figure 6.34 when
Direct Form | is used.
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Figure 6.36 Symmetry of zeros for a
linear-phase FIR filter.
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FEttects of Coetticient Quantization (IIR
Systems)

Effects depend on the filter structure

Want to demonstrate the sensitivity of the filter frequency response
characteristics to quantization of the filter coefficients is minimized by
realizing a filter having a large number of poles and zeros as an
interconnection of 2"d-order filter sections.

For Direct Form:

i Z iﬁkz"‘
H(z)=————>H(z)=—5
> azt 1->4z"
= =)

A(z)
Note: & =a, +Aa,; b, =b +Ab,
o Note that quantization error in a given coefficient affects all the poles of
the system function.

o Suppose that the poles are all first order and they are located at z = z,,
fori=1,2,.., N

= EEEC20034: Intro. to Digital Signal
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Effect On Pole Locations

This will affect the frequency response and stability
Consider the denominator of an unquantized and quantized rational system function

-

N

:1—ZN:akz‘k | ‘_(1— zjz‘l)

[

k=1

N
-y a4z  =[](1-22)
k=1

j—l

\

where Z =z +Az, i=1..,N

Az, is the error or perturbation of the |th pole resultlng from the quantization of the filter coefficients.
The perturbation error Az, can be expressed in terms of the errors in the coefficient as

0z, :
Az, Zz[éa ]Aak, i=12,..,N,

where 7/ ca, represents the incremental change in the pole z; due to a change in the coefficient a,.
In other WOI’éS al aa, is the sensitivity of the pole location to quantization of a,. The total error Az
IS expressed as a sum of the incremental errors due to changes in each of the coefficients {a.}.

Remark: This formula is approximately true when 4a, and Az, are small.

EEEC20034: Intro. to Digital Signal
Processing
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Effects of Pole Locations

The partial derivative cz/da,, k=1, 2, ..., N, can be obtained by differentiating A(z)
with respect to each of the {a,}.

)L

0z, (6A( z )/aak )z:zi
oa, (aA(z)/az)Hi

Then

The numerator is

The denominator is

EEEC20034: Intro. to Digital Signal
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Effects On Pole Locations

Therefore, 0z, /0a, is equal to

oz _ —z Nk
% ﬁ(zi -7;)
j=t
j#i
Therefore, the total perturbation is
N k
Az, _—Z !
H(z -1, )

i=
j#i

That is, if (zi-z;) is small, then cz;/ 2, is large, which contributes to large errors
and hence a Ia{rge perturbatlon error Az, results. For example, in narrowband
filter, the lengths |z; - 7| are small for poles in the vicinity of z.. This problem
can be alleviated if we iImplement high-order filter with either smgle pole (and
single-zero) filter sections. To avoid complex-valued arithmetic, the complex
poles/zeros are combined with their conjugates to form 2nd_order sections.
These codnjugates pairs are usually sufficiently far apart, thus, {4z} is
minimize

Remark: The preceding analysis can be derived for the sensitivity of the zeros
to the quantization errors in b,’s.

= EEEC20034: Intro. to Digital Signal
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Mitigation Effects ot Quantization Noise:
Parallel and Cascade Forms

Mainly consists of 15t and 2" order sections to
avold complex-valued multiplications

Errors in a particular pole pairs (section) are
Independent of the other poles (sections). This IS
also true for zeros in cascade form. =» In general,
both the cascade form and the parallel form are
less sensitive to coefficient quantization (because
zeros are often widely distributed the unit circle).

' EEEC20034: Intro. to Digital Signal
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Example: Bandpass IIR Elliptic Filter

0.99 <|H(e)|<1.01 037<w<04r
|H(ej”’)|so.01 (-40dB ) 0<0.297
[H(e")|<0.01 (-40dB) 04lr<w<n

Coefficients in Table 6.1 were computed with 32-bit floating point
(defined as “unquantized”). The table gives the coefficients of the six
2"d order sections, i.e.

N, -1 -2
|-|(z):1—[bok+b1kf1 +b2k{2  where NS:LNHJ’
ka1 1—a,Z —a,z 2

and N is the total number of poles

To show the effects of quantization, Table 6.2 shows the coefficients in
Table 6.1 quantized using 16-bit accuracy using fixed-point
representation. The fixed-point coefficients are shown as a decimal
Integer times a power of 2 scale factor. The binary representation
would be obtained by converting the decimal integer to a binary
number. The scale factor would be represented only implicitly in the
data shifts that would be necessary to line up the binary points of
products prior to addition to other products. Note that the binary points
of the coefficients are not all in the same location.

' EEEC20034: Intro. to Digital Signal
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Example: Bandpass IIR Elliptic Filter

For example, all the coefficients with scale factor 2-15 have their binary points as
b0 Obl bz b3 bB’

where B+1 is the total number of bits, b, is the sign bit, and b, is the highest fractional
bit. This is commonly known as Q15 format. Converting coefficient a,, in Table 6.2 to
binary, we have (b, here is implied to be 0)

24196 =» 0.101111010000100

where the decimal point is on the left side of leftmost ‘1’. Thus, representing this as a
decimal value

(1x27)+(1x27°) +(1x27) +(1x 27 )+ (1x2° ) +(1x2° ) + (1x 2% ) = 0.7384
For coefficients in Table 6.1 whose values do not exceed 0.5, we can represent them

using the Q16 format, i.e. scale factor is 2-16, where the binary points is located in front
of by, i.e.

,0p bbb, b,
For example, the integer part (and the binary equivalent) of coefficient b, in Table 6.2 is
18278 = .0100011101100110.
Thus, representing this as a decimal value

(1>< 2*2)+(1>< 2*6)+(1>< 2*7)+(1>< 2*8)+(1x 2*1°)+(1>< 2*“)+(1>< 2*14)+(1x2*15) =0.2789

EEEC20034: Intro. to Digital Signal
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Example: Bandpass IIR Elliptic Filter

But for coefficients whose value exceeds 1 but less than 2, then we must move the
decimal point one place to the right, i.e. between b, and b,

by, o0, b5 ... by,

For example, a,sthe integer part (and the binary equivalent) of coefficient b, in Table
6.2 is

19220 = 01.00101100010100.
Thus, representing this as a decimal value

(1x 2°)+(1>< 2-3)+(1>< 2-5)+(1>< 2-6)+(1x 2-1°)+(1x 2-12) =1.1731

Use of different binary locations retains greater accuracy in the coefficients, but it
complicates the programming or system architecture

EEEC20034: Intro. to Digital Signal
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‘ Example: Bandpass IIR Elliptic Filter

= We can see that if Direct Form | structure is used, as in Figure 6.47e, quantization has destroyed the frequency response of
the system since it is more sensitive to quantization error than either cascade form (Figure 6.47c) or parallel form (Figure
6.47d).

TABLE6.1 UNQUANTIZED CASCADE-FORM COEFFICIENTS
FOR A 12TH-ORDER ELLIPTIC FILTER
k ik @2k bog b1k b2k ) .
1 0738400 0850835 0.135843 0.026265 0.135843 One’S Complement (ﬂlp 3.“ bItS)
o SN —Lk ] e T LN s ) e
2 0060374 —0.860000 0278901 —0.444500 0278001 B =—29131=.1000111000110101
30 0620440 0931460 0535773 —0.249249  (0.535773 1+ 2*1 + 2*5 + 2*5 + 2*7 + 2*11 + 2*12 + 2*14 + 2*16 =_0.4445037842
4 1116458 —0.940429 0.,697447  —0.801543 (0.697447 '
5 0605182 —0983693 0773093 —0.425920  0.773093
6 1173078 —098a1a6 0917937 —1.122226  0.917937
TABLE 6.2  SIXTEEN-BIT QUANTIZED CASCADE-FORM COEFFICIENTS FOR A

12TH-ORDER ELLIPTIC FILTER

k o (L) bl:lk hlk / b?k Hidden Zero
| 24106 % 2-5 07880 x 25 17805 % 2-17 3443 x2-1y 17505 2-11 «— after decimal
2 31470x 275 28180 x 271 18278 x 2716 _20131 » 216 18278 » 216

320626 271 30522 %2715 17556 % 2715 _R167 w2715 17556 % 2713

4 18202 % 278 30816 %275 22854 % 27 20214 % 270 22854 271

5 19831 x 271 32234 % 2715 25333 % 2-1F 13057 w2715 25333 % 215

6 19220 27¥  _32315x 278 15039 x 271 18387 iz-“ 15039 x 2~ 14

One’s complement (flip all bits)

b, =-18387 =10.11100000101101

Processing

EEEC20034: Intro. to Digital Signal
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Coetticient Quantization in FIR Systems

H (z):ni;h[n]z‘n > H (z):Zﬁ[n]z‘”

=H(z)+ AH (z), where AH(z) = iAh[n]z‘”,
3" An[n]z ™" "0
and {A[n]=n[n]+an[n]} IS @ New set of coefficients obtained If
the coefficients h[n] has been quantized and {4h[n]} are
the quantization error samples of {h[n]}

Effect on the zero locations

o The sensitivity function of this form is similar to that of the direct
form | IR filter. That is, if the zeros are tightly clustered, their
locations will then be highly sensitive to quantization errors.
However, for most linear phase FIR systems, the zeros are more
or less uniformly spread on the z-plane.

' EEEC20034: Intro. to Digital Signal
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Effect on H(¢/%)

After scaling (all coefficients < 1), each h[n] is represented by (B+1) bits 2’s
complement number; i.e. -2-®*) < Ah[n] < 2-B*+1)

AH(e)= n%Z(‘;Ah[n]e“""”

M .
Ah[n]e~i"

n=0

M

< Z|Ah[n]‘e‘j””
<(M+1)2¢
This gives us the (pessimistic) error bounc;vs for different quantized systems.
For M+1 = 28: 16-bit: 0.000427; 14-bit: 0.001709; 13-bit: 0.003418; 8-bhit:
0.109375.

It’s pessimistic because if we look at Figures 6.46¢ — 6.46f, we will see that the
approximation error is always less than what the bound provides. To reach the
bound, the quantization errors would have to be of the same sign and equal to
the maximum value

Note that there will no effect on the linear phase property as long as hn]=h[m -n]

AH (e "“’}

EEEC20034: Intro. to Digital Signal
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‘ Example: Linear Phase Lowpass Filter

0.99 <|H (™) <1.01
H(e™)|<0.001 (-60dB)

0<w<04r

0br<w<rx

TABLE6.3 UNQUANTIZED AND QUANTIZED COEFFICIENTS FOR AN OPTIMUM FIR
LOWPASS FILTER (M = 27)

Coefficient Unguantized 16 bits 14 bits 13 bits 2 bits
h[0] = k[27] 1.359657 » 10— 45 5 2710 11 =271 b 2712 027
h[1] = k[26] —1.616993 = 10~ —53 % 2715 —13 =270 —T x 2712 0277
h|2] = k[25] —7.738032 = 10~2 —254 x 2713 —63 x 271 —32x 2712 —1 %27
h|[3] = k[24] —2.686841 = 10~ —88 % 2715 —22x 2713 —11 2712 0277
hl4] = k[23] 1.255246 = 10—2 A1 2710 103 » 271 51 x 2712 2x 277
h[5] = k[22] 6.591530 5 10~ 26 2710 54 %270 27 x 2712 13277
h|6] = k[21] —2.217952 % 1072 —T27T %2715 182 2718 —01 5 2712 —3x277
h|7] = k[20] —1.524663 x 1072 —500 3 2715 125 x 271 —62 3 2712 —2x277
h[8] = k[19] 3720668 = 102 1219 % 2715 305 = 271 152 » 2-12 5% 277
h[9] = k[18] 3.233332 x 102 1059 » 2-15 265 x 213 132 x 2-12 4x2-7
h[10] = R[17]  —6.537057 = 1072 2142 271 536279 268 2712 —8x277
h[11] = h[16] —T7.528754 % 1072 2467 = 271% 617 =279 308 %2712 _—10x277
h[12] = k[15] 1.560070 x 10~ 5115 5 2715 1279 x 2~13 630 x 2712 20277
h[13] = h[14] 4.304094 » 10~} 14300 5 2715 3600 = 2~V 1800 x 212 563277

Processing

EEEC20034: Intro. to Digital Signal
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Figure 6.46 FIR quantization example.
{a) Log magnitude for unquantized case.
(b) Approximation error for unquantzed
case. (Error nat defined in transition
band.) (c) Approximation error for 16-bit
quantization.
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e || | c From Figure 6.46, we see that using
RRVERVAR! 13-bit quantization, the stopband
ool ——1 N1 approximation error becomes larger
Fodon reens (v) than -60dB. And using 8-bit
oot —— quantization, the stopband
ml ."Ih, l." "',I ‘ approximation error becomes 10 times
'. I.' | as large as what is specified. So, we
c = | o~ need at least 14-bit coefficients in
sl || I'. I order to meet the design specifications
o using Direct Form I. This is also
om0y —— reflected in the pole-zero diagram in
prnn e Figure 6.47. The zero location is
0.5 hardly affected in the 16-bit case.
o - N However, the zeros location have
wh N\ N moved significantly in the 13-bit case
1/ \ | (and lower), thus affected the
' VRN \/ frequency response in the passhand
o \/ “ and stopband
-0 D.:I-r .!1— U.éwr -:-.slﬁ-

Radian frequency {w)
i)

Figure 6.46 (continved)

(d) Approximation error for 14-bit
quantzation. (&) Approximation emror for
13-hit quantization. (f) Approximation
emorfor 8-bit quantization.
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FIRE Lowpass Filter:

FIE. Lowpass Filter:

Ungquantized Coefficients 16-bit Coefficients
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FIR Lowpass Filter: FIR. Lowpass Filter:
13-bit Coefficients &-bit Cocfficients
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Figure 6.47 Effect of impulse response quantization on zeros of Hiz}. (a) Un-
quantized. (b} Sixteen-bit quantization. (c) Thirteen-bit quantization. (d) Eight-bit
quantization.
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Cascade Form For Linear Phase FIR
Filters

less sensitive than Direct Form | because it isolates the quantization errors
from the other sections

To preserve linear phase, each section has to have linear phase

o (1+azl+z2): this 2" order section would contain complex conjugate pair of zeros
on the unit circle, so the zeros can move only on the unit circle when a is quantized
—> prevents zeros from moving away on the unit circle as in Figure 6.47c.

o Same 2" order section can also be used for real zeros inside the unit circle and its
reciprocal (outside the unit circle) so that the zeros would remain real

o zeros at =1 can be realized by first-order systems

o Ifa 2" order section is used to implement a pair of complex-conjugate zeros inside
the unit circle instead of a 4-order system (since there are a total of 4 zeros which
we need to take care of due to the fact that zeros for linear-phase FIR systems occur
as reciprocal pairs), then to ensure that linear-phase property is preserved, we can
factorize 4™ order system as

1
2

1+czt+dz2+cz 3+ = (1— 2rcosfz ' + rzz‘z)
.

(r2 —2rcosfz '+ 2‘2)

. 1
where the zerosareat: z=re!’’ and z==¢
r
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Cascade Form For Linear Phase FIR
Filters

-1 1
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Figure 6.48 Subnetwork to implement fourth-order factors in a linear-phase FIR

system such that linearity of the phase is maintained independently of parameter
quantization.

so that the system uses the same coefficients, namely, -
2rcos @and r?, to realize both the zeros inside the unit
circle and the conjugate reciprocal zeros outside the unit
circle. Therefore, linear phase condition Is preserved
under quantization.
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