Discrete Fouriter

Transtorm (DFT)

Carrson C. Fung
Institute of Electronics
National Yang Ming Chiao Tung University




Introduction

The DTFT is a theoretical tool to evaluate the frequency response of
signals and systems
o Unfortunately, it cannot be computed using a digital computer
o Solution: Sample the frequency spectrum =» DFT
o Unlike the CTFT, the DTFT does not have a duality relationship, i.e. if
X(t) < X(j€2), then X(t) < 22x(-JQ2), but no such relationship exists

between x[n] and X(e!®)
As seen in the sequel, there is a duality relationship between x[n] and X[k]

|dea:

o Sample the (continuous) function X(el?)
Corresponding function in time now also becomes periodic (but still
discrete-time (this is the DFS)

o Crop out one period of the sequence in time and frequency domain =»

DFT
However, there is an inherit periodicity in the time and frequency signals

(more later)
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Discrete-Fourter Sertes (DES)

27,

Define: W, 2“7V thus Wk =e¢ '™
Properties of W, :
e W, is periodic with period N (it is essentially cos and sin): W, =W ™ =W N =...
e Since W, is periodic with period N, unlike the CTFS, the DFS representation of a
periodic signal >~<[n] needs only N complex exponentials, i.e.

k=0

where X [k] is the DFS coefficients of X[n].

X[n]

X[n]=X[n+rN]  period N
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Discrete-Fourter Sertes (DES)

The DFS representation of X[n| thus becomes
Synthesis equation:

1 N-1
x[n]==> X[k]w,™
N k=0
Analysis equation:
N-1
X[k]= 2 %[n]w,"
n=0

Note: The tilde in X indicates a period signal.
X [k] is periodic with period N.

EEEC20034: Intro. to Digital Signal
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Is this relationship true?

To show that the analysis and synthesis equations are indeed true, we can derive

the analysis equation from the synthesis equation. But first, we need to show that

the following property is true:
N, if /=mN

N-1
ZW k —
— N {o, if ¢=mN

(Pf) (i) If £=mN, W =W™ =1. So

Zw'k 21 N

k=0

(i) If £ mN, W, =1, which can be shown by using the geometric series
1_ k+1

k
relation: Zr” = . Then

— 1-r

fwgk 1w 11

=N -w! 1w,
Note that this property can be written more compactly as

1 N-1 0
Y[f]ZNkZ;WNﬂk _ Z S[¢~mN]
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How come the DES relationship is true?

N-1 _
(Pf) %[n] :iz X [k]w, ™
N ¥
Pick an r where 0 <r < N —1. Multiply both sides of the synthesis equation
by W," and sum fromn=0to N -1

N-1 1 N-IN-1
D R[nWEt == XKW, Wy
n=0 N n=0 k=0
N-1 1 Nt
S AL Ewe
k=0 N n=0
Now using the property from the last page, we know that
18, 1, k-r=mN
il W(r k)n _J>
N nzz:; " {0 else
So,
N-1 1 Nt (-4 -1
X[k](ﬁ h j:ZX[k] (for r—k =mN)
k=0 n=0 k=0
= X[0]0+ X[1]0+--+ X [k =r]1+---
= X[r]
5 N-1
Thatis, X [r]= ) X[n]w" QED
n=0
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Example: Periodic Rectangular Pulse Train

X[n]

-10 012345678910 n

Figure 8.1 Periodic sequence with period N = 10 for which the Fourier series
representation is to be computed.

e sin[ ZX I‘l“ I‘I_I_T_l_lll,"'k

1.
678910 15

~ 4 1—W. 2k j 2 : :
X[k]=>Wg ==— 8 —¢ 0 =2 :
= 1-W. : K "
n=0 10 sIn L ‘ .

I 1 I 1 I

[ F [ [
» denotes indeterminate <
(magnitude = 0)

(b)

Figure 8.2 Magnitude and phase of the Fourier series coefficients of the sequence
of Figure 8.1.
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Properties of the DFS

Linearity:

%[n]e Xl[k]}

%, [n]e> X, [K]

then ax, [n]+bx, [n] <> aX, [k]+bX, [K]
Time Shift:

If X[n] <> X [K]

then X[n—m] <> WX [K]
Note that any shifts that are greater than or equal to the period, i.e. m> N cannot
be distinguished in the time domain from a shorter shift m, such that m=m, + m,N,
where m, and m, are integers and 0<m, <N —1. Or simply, m, = m modulo N
i.e. m, is the remainder of m/N. So W™ =W™.
Since the DFS coefficients sequence is also periodic, we have a similar result for
the shift in the DFS coefficients by an integer /
, 1.e.

IfX[n] <> X [k

then W' %[n] <> X [k —/]

EEEC20034: Intro. to Digital Signal
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‘ Properties of the DEFS (cont’d)

Duality:
1t %[n] <> X [K]
then X [n] <> NX[-k] (Prove later)
Symmetry
If X[n] <> X[K]
then
Re{%[n]} > X, [k](:%(i K]+ X*[_k])]
jim{x[n] & xo[k](:%(x [k]—X*[—k])j
Also
)?e[n]:%(i[n]ﬂi*[—n])(—) Re{X [k]}
Xo[n]:%(i[n]—i*[—n])e) jIm{X k]

Varm £ Processing



‘ Properties of the DEFS (cont’d)

Symmetry (cont'd):
If %[n] isreal, X [k]=X"[-k]
pen | -1
| £X [k]=-2X[-kK]
Re{X [k]} =Re{X []}
[Im{% [K]} =-1m{X [k]}
g% FEEC20034: Intro. to Digital Signal
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Proof ot Duality

Proof:
N-1 1 N1 N-L
Since X[n]=— Zx [k]W", then X[-n] = N X [KWg" = Nx[-n]=> X [k]w,"
k=0 k=0 k=0
N-1
Compare this to the analysis eqn: X [k]=>"%[n]W,", then we see that
N-1 "~
NX[-k]="> X[n]w,"
k=0

EEEC20034: Intro. to Digital Signal
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Properties of DFS: Periodic Convolution
(Circular Convolution)
) I“TTNT i,

Periodic Convolution: R g RS
If % [n], %, [n] are periodic sequences with period N Sylm)
ten 3.5 [m]% [n-m] X, (K%, 1] [ttt

3[ ] n]<—> ZX B[l = m) = Ka[-(m — 1)]

These convolution equations Iook very similar to the ones from [ I 1] W T 1 I 1] [ W { T 1] T 1 [ {
DTFT, but there is a very subtle difference here. That is, the - ! !
sum in the convolution here is only for a single period!

-N a '\

Figure 8.3 Procedure for forming the periodic convolution of two periodic
SequUances

EEEC20034: Intro. to Digital Signal
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‘ Properties of DES

DISCRETE FOURIER SERIES PROPERTIES

Periodic Sequence DFS Coefficients

(Period N) (Period V)

7[n] X [k] periodic with period N

71[n], T2[n] X1 [k]., X2[k] periodic with period N
azi[n] + bxa[n] aX[k] + bXs[k]

X[n] NZ[—k] (Duality)

F[n — m] e I T Fm Xk

eI T[] X[k —1]

S Nl & [m]Fa[n — m] (periodic convolution) X1 [k Xo[k]

#1[n]a[n] ¥ T X1l Xalk — €]

(periodic convolution)

EEEC20034: Intro. to Digital Signal
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‘ Properties of DEFS

#*[n] X*[—k]

7 [-n] X~ [k]

Re{#[n]} Xk =1 (f[k] + }?‘[—k])
jIm{F[n]} Xolk] =1 (5? k] - X “‘[—k])
Fe[n] = § (F[n] + 7" [-n]) Re{X[k]}

Foln] = 5 (&[n] — & [—n]) iIm{X[k]}

The following properties apply only when z[n] is real

X[k] = X*[-k]
Re{X[k]} = Re{X [k}
Im{X[k]} = —Im{X[-k]}
| X[K]| = | X[F]]
£X[k] = —4X[—k]

Symmetry properties

.

#.[n] = 1 (3[n] + ¥[—n)) Re{X[k]}

%,[n] = L (&#n] — ]—n)) JIm{ X [k]}

EEEC20034: Intro. to Digital Signal
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CTFT of Periodic Signals

Recall that the CTFT of a periodic continuous function %(t) can be written as

ety _Jo i To
K(1)= Y x(t=mT,) where x(t)={ ) "3 =155
m 0, else.
The CTFS of X(t) can then be written as
TO
X(t)=> c,e" where c, :Tij%o %(t)e ™'dt and Q, =27F, 2z
n 0 2 0

Since the x(t) is Fourier transformable, we may rewrite the CTFS coefficients c, as

EEEC20034: Intro. to Digital Signal
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CTFT of Periodic Signals (cont’d)

This is known as the Poisson's sum formula. Recalling that the CTFT of e’ s
2716 (Q—€,). Then

D x(t=mTy) < 272F) > X (jQN) 5 (Q—QeN) = > X (jQeN)5(Q—Qyn).

m

Therefore, the CTFT of a periodic continuous-time signal consists of delta functions
(impulses) occurring at integer multiples of the fundamental frequency F,, weighted

by Q,X (j©,n), where X (jQ,n) is the CTFT coefficient of the signal x(t) evaluated
at Q,n.

EEEC20034: Intro. to Digital Signal
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Fourier Transtorm of Periodic Signals

X(t—=mTy) < QD> X (jQyN)5(Q-Q;

Recall from Chapter 2 that the DTFT of a periodic sequence is represented by
Impulse train. This is because periodic signal has neither uniform convergence
nor mean-square convergence since it is not absolutely summable nor square
summable. As n—>zoo, the sequence does not go to zero

With the knowledge about the DFS, we will show that DFS is actually a
sampled version of the DTFT (via examples below)

Recall from above that the CTFT of a periodic signal requires the use of
impulse train in the frequency domain with impulse values weighted by the
CTFS coefficients for the signal

Similarly, in discrete-time domain, the DTFT of a periodic sequence is
represented by a impulse train in the frequency domain weighted by impulse
values proportional to the DFS coefficients for the sequence, i.e.

(o) =203 X [K]o[ - 22K

Note the X (e*) has periodicity of 27 because X [k] is periodic with N and the
Impulses are spaced at integer multiples of 27/N

EEEC20034: Intro. to Digital Signal
Processing
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Example 1

Here, we want to show that the DFS coefficients are a sampled version of the DTFT.

Consider the periodic impulse train
=> 5[n-rN]
From the analysis equation of the DFS, we see that
P[k]=1 Vk.
Therefore, the Fourier transform of p[n] is
( Jw) 27[25( 27zk)

Now consider the aperiodic sequence x|n]

x[n]

‘]ITf'r___,,_
N n

EEEC20034: Intro. to Digital Signal
Processing
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Example 1 (cont’d)

Now convolve x|[n] with f[n] we get
%[n]=x[n]*p[n]=x[n]* Z5[n—rN
_Z n—rN]j.

X|n]

SR ITIR T

F

Using the convolution property, the Fourier transform of >”<[n] IS

X(e")=x(e”)P(e")

= X (ej“’)%z5 a)—ZNij

EEEC20034: Intro. to Digital Signal
F  Processing
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Example 1 (cont’d)

Therefore, comparing this equation to X (e ) = ZWEZ X [k]5(a)—2—ﬂk}
k
we see that

X [k]= X (eJNkj =X (")
From this example, we see that the DFS coefficient X [k] of the signal X[n]

Is equal to the DTFT of the corresponding aperiodic signal x[n], sampled at

27K
N
Since the DTFT of x|n] is periodic in & with 27, the DFS of X[n] resulting

sequence is periodic in k with period N

= EEEC20034: Intro. to Digital Signal
F  Processing
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Example 2

Consider the periodic sequence X|n]|

i[n]— 1, rfro<n<4+r10
10, 5+r10<n<9+rl0
with r e Z. Itis obvious that a single period of X|n] is

1, 0<n<4, _
x[n]: . with N =10
0, else

x[n]
-10 012345678910 h

Figure 8.1 Periodic sequence with period N = 10 for which the Fourier series
representation is to be computed.

EEEC20034: Intro. to Digital Signal
F  Processing
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‘ Example 2 (cont’d)

The DTFT of the sequence is

|X (ed)]

LX(e™)

(b)

Figure 8.5 Magnitude and phase of the Fourier transform of one period of the
sequence in Figure 8.1.

EEEC20034: Intro. to Digital Signal
Processing
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Example 2 (cont’d)

LX (e/), 1 X [k]l
5

The Fourier transform of x[n] is given by

S i i SiN(50/2)
X =2 = o) A
2r
Since X [k]= X (elNk] =X (ej”’)

(since N =10, not 4) to obtain the DFS coefficients of X[n], which is

)Z[k]:e_jZ(igk) S-in(ﬂ'k/Z)
sin(7k/10)

8

(a)

,+ » We substitute @ =27k /10

|

(b)

Figure 8.6 Overlay of Figures 8.2 and 8.5 illustrating the DFS coefficients of a
periodic sequence as samples of the Fourier transform of one period.

EEEC20034: Intro. to Digital Signal
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Sampling the Fourter Transtform

As seen from the above, X[k] is
periodic in k with period N. Since the
Fourier transform is equal to the z-

transform evaluated on the unit circle, X [k]

can be obtained by sampling X(z) at N
equally spaced points on the unit

circle
27k
Z:ejZNLk = X [e " ]

X[k]=X(2)
We have seen that X[k] is the DFS
coefficient of x[n] and X[k] isa
sampled version of the DTFT of x[n].
So we formally derive the relationship
between x[n] and %[n] (as we have
seen before, x[n] represents one of
period of x[n] ).
We can actually draw parallels in the
relationship between x[n] and x[n]
with that of X(jQ2) and X(e!®)

EEEC20034: Intro. to Digital Signal
Processing

Fm
- . -, [

_ v <-plane
Unit Var
circle \ N

| i \
¢ $-1

Figure 8.7 Points on the unit circle at
which X(z) is sampled to obfain the

periodic sequence X[k] (N = 8).
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‘ Comparison With Uniform Sampling

in Time

Aperiodic sequence:

x[n] —>DTFT—> X(e") x(t) ->CTFT—> X (jQ)
17 J sampling Compareto: <+ sampling T ?

X[n]« IDFS « X [k] =X (e™) x[n] > DTFT — X ()

|a)=2ﬂk
N

EEEC20034: Intro. to Digital Signal
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Relationship Between x[#| and X|n]

1 N-1
K[n]==> X[k]w,™ (IDFS)
N i
1 & jo —kn -
N2 X (e )sz”kjWN (Sampling)
1 N -1 © ) )
= > x[m]e""mj W, (FT)
k=0 \. m=—o0 w:%ﬂk

N1 N-1
-y X[m]W ZWNK(““)} (recall that %ZW({" = > 5[¢—-mN])
~ | = k=0 m
25[nfm+rN]

= x[n]*zrlé[r;+ N]

> x[n+rN]
T
EEEC20034: Intro. to Digital Signal
F  Processing
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Aliasing in Time

x[n]

In Figure 8.8, we show that if we sample ... . .. . . . ... 1||IHIII .......

X(el®) with high enough N, then x[n] can be 0 ;

recovered from %[n] by extractlng one period

of x[n] . Butif we do not sample with $

enough N (Figure 8.9), then we will have

aliasing in time. In that case, we will not be

able to recover x[n] from x[n] | ‘ ‘ | | I ‘ I
1] L1 .1l L

If x[n] has finite length and we take a
sufficient number of equally spaced samples N
of its Fourier Transform (a number greater ®)

than or equal to the length of x[n]), then x[n]

IS recoverable from i[ngj

h

II — |t

Figure 8.8 (a) Finite-length sequence x[n]. (b)

Two ways (equivalently to define the DFT): Periodic sequence X[n] corresponding to sampling the
) N samples of the DTFT of a finite duration Fourier transform of x[n] with N = 12.
sequence x[n] Figure 8.9 Periodic sequence X[n] corresponding to
2 Or, make the period replica of x[n] > %[n] sampling the Fourier transform of x[n] in Figure 8.8(a)
Take the DFS of %[n] withN = 7.

Pick up one segment of X [k]
x[n] - DFT - X[K]

i s il m\

H J‘."

x[n] - DFS— X]k] _1-4 -------------------------------

' EEEC20034: Intro. to Digital Signal
9 ' Processing 27



Discrete Fourter Transtorm (DEFT)

x[n]: length N, 0<n<N-1
Make the periodic replica:

x[n]zix[nﬂm]

= x| (n modulo N) |

Keep one segment (finite duration)

x[k]:{z[k]’ o?hge:(wgiszl 1 Thatis, X [k] = X[ (%)), |

EEEC20034: Intro. to Digital Signal
F  Processing
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DFT (cont’d)

N —
Analysis eqn: X [k]=)> x[n]Wwy", 0<k<N-1

n=

RN

0
N —

ZX[k]WN"‘”, 0<n<N-1
k=

|_\

Synthesis egn: _%

Remarks:
o DFT formula is the same as DFS formula. Indeed, many properties of DFT are

derived from those of DFS.

« Keep in mind that X[k] is equal to samples of the X(el®), and if the synthesis
equation is evaluated outside the interval 0 < n < N-1, then the result will not be
zero but a periodic extension of x[n]. This inherent periodicity is always present!

EEEC20034: Intro. to Digital Signal
Processing
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DFT Example

In two cases, we can see that if we sample faster, then more information about
the original DTFT can be shown, i.e. both DFTs (N=5 and N=10) contain same
amount of information, but the extra information shown in the N=10 case is just
hidden in the N=5 case. Remember, to get the 10-point DFT, we have simply

i 1, 0<n<4
Consider the sequence: x[n]=
0, else
Let X[n] be the periodic extension of x|n].
For the first case, let
~[n] B 1, 5r<n<4+5br
o, else
and for the second case, let
_ 1, 10r<n<4+10r
X[n]=
0, else

zero-padded the original sequence, nothing more.

EEEC20034: Intro. to Digital Signal

Processing
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DFT Example (cont’d)

e

SRR AR 111 O [ T L I

n

ST oy
\\/w(e )

(b)
X[k] 5 | X[K]
e AT 324 3.24 Ikl
£ k / b
1 I T . | 124 124 l
;III SN . FARN r-I L. P FaRN Illl 1" P P S S S S S S > T > T - T - &
o | Ly sy iy [ YA N A [ -10 0 10 k
1 0 1 2 3 4 5 6 7 & 9 10 11 k
0 2ar Har @ (c)
(c)
LX[K
04
3 X[k ]U.211'
0 0 l ; 0k
-02m
2 1 0o 1 2 3 4 5 6 1 & 9 10 11 k
(d)

04w
(d)

Figure 8.10 lllustration of the DFT. {a) Finite-length sequence x{n]. (b) Periodic

sequence x[n] formed from x[n] with peried N = 5. (c) Fourier series coefficients
X [k]for X[n]. To emphasize that the Fourier series cosfficients are samples of the
Fourier transform, | X (/]| is also shown. (d) DFT of x[n].

Figure 8.11 [llustration of the DFT. (a) Finite-length sequence x[n]. (b) Periodic
sequence X[n] formed from x[n] with period ¥ = 10. (¢) DFT magnitude. (d) DFT
phase. (s indicate indeterminate values.)
EEEC20034: Intro. to Digital Signal
Processing
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IDFT Matrix

The IDFT and DFT is a linear transform
o The computation can thus be represented using a matrix multiplication 1 %

The (n,k)th element of an NxN matrix N-point IDFT matrix Wy is [W,] =-—=e"
This is a symmetric (but complex-valued) matrix N
Example: o1 1 17

11 1 j -1 —j
wo L[ 1] g it j
J211 -1 21 -1 1 1

1 —j -1 ]

DFT coeff. vector x, = W\"x, where X, is a Nx1 vector containing the DFT coefficients X[k],
and x is a Nx1 vector containing the time domain sequence x[n]

The DFT matrix can be generated by matlab using the function dftmtx. Note that this
generates a unnormalized version of the DFT matrix, i.e. Wy is only an orthogonal matrix,
NOT orthonormal, so Wy W H = NI not I

Properties of the IDFT matrix

o Wy=W,T, i.e. W is symmetric

o W\H=w

o W t=W,"

= EEEC20034: Intro. to Digital Signal
F Processing 32



‘ Properties of the DFT

Linearity:

%[n]e Xl[k]}

%,[n] <> X, [k]

then ax, [n]+bx, [n] <> aX,[k]+bX, [k] (length=max|[N,, N, ]
Circular Shift:

If x[n] <> X [K]
then x[((n -m)). ] WX [K]
also W, ""x[n] <> X [((k _g))N ]

B t[5)» EEEC20034: Intro. to Digital Signal

% £ Processing
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Proot ot Circular Shift Property

Let

.27k
—mM

X,[k]=e VX [k]=WEX [K]
From the definition of the DFT, we know that

% [n]=x[((m), ] Xuk]=X[((k)), ]
Then, the DFS of %, [n] is

27((k)), 27k 2k

~ —j——m —j—m - ~
Xi[k]=e " " UX[((K)), =& M OX[((K)), J=e T X K],
Then it follows that shifting property of the DFS that
% [n]=%[n—-m].
Then from the definition of the DFT

K[n-m]= x[((n—m))N].

Therefore,

X |n{=Xx|((n=m , 0<n<N-1
Xl[n]: l[ ] |:(( ))N:|
0, else.
Remark: This is a circular shift, not linear shift. (Linear shift of a periodic sequence
= circular shift of a finite sequence.)

EEEC20034: Intro. to Digital Signal

Processing
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Example: Circular Shift

|
I x[n]
%
|
n

|
|
|
|
|
|
0 I N
|
|
|
|
|
|
|

|
|
| ()
|
|
|
|

wetave [n]=x(((n), ] wewantooain ——y 111 11171114 ]
>~<1[n]:>~<[n+2]zx[((n+2))6]_ This is shown in |

10

|
®) |
|
|

Figure 8.12(c). Figure 8.12(d) shows a single

period of ,[n]. “lllr“lllr“]\,l Ir“lr f]'[n]f[m:

|.'
' |
| [C) |
' |
| |
| | xy[n] = ¥ [n],0=n <_:,._Ii\.f_1
I I 0, otherwise
' |
' |
' |
10 IN -
! |

(d)

Figure 8.12 Circular shift of a finite-length sequence; i.e., the effect in the time
domain of multiplying the DFT of the sequence by a linear phase factor.

EEEC20034: Intro. to Digital Signal
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Duality Property of the DFT
AN —

Duality:
If x[n] <> X[k]
then X [n] > Nx| ((k)), |, 0<k<N-1

Example:

Consider the finite length sequence x[n]
shown in Figure 8.13(a). Figures 8.13(b)
and 8.13(c) show the real and imaginary
part of X[k]. To show the duality property,
we relabel the k-axis in Figures 8.13(b)
and (c) to be n-axis, shown in Figures
8.13(d) and (e). According to the duality
property, Figure 8.13(f) shows the DFT of
the complex-valued sequence of Figures
8.13(d) and (e).

EEEC20034: Intro. to Digital Signal
Processing

s 9 10
Re X [k])
5 s
A FelX ()] /
N NN s
0 1 3 6 7 879 10 &k
0 P I
(b}
3 Im{X[k]}
Fm[X(eF)
I
0 ! 3 i N \
o, 2 N 556 7 8 9 10 &
0 / m 2 w
v
e
(c)
|" Welxy|n]} = Re|X([n])
1 1 1 1 1
[ | | | |
3

6 7 8 9 10

Fmfx,[n]} = Sm[X[n])

‘ 308

. 5 1073
: I s 6 7 8 9 10
-0.73
—3.08 (e)
Xy [k] = 10x [((=K)) 1]
’m { ‘ X ‘
01 6 7 8 9 10 k

Figure 8.13 llustration of duality.

(a) Real finite-length sequence x[n].
(b) and (c) Real and imaginary

parts of corresponding DFT X [A].

(d) and (e) The real and imaginary parts
of the dual sequence xy[n] = X [n].

(f) The DFT of x4 [n].
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‘ Symmetry Properties of the DFT

Since X[n] = x[((n))N] and X [k]=X [((k))N] and X [n] <> X" [-k] and
X' [-n]«> X" [k], we have
X' [n]«2T5 X[ ((-k)), |, o<n<N-1

X[ ((-n)), [« 2> X [k], 0<n<N-1

Table 8.1: DFS properties

Re{%[n]} X.[k] =3 (f[k] + f*[—ﬁf])
FIm{Fn]) Xo[k] =1 (flk] - X [—k])
Fon] = L (&[n] + 5 [—n]) Re{X[k]}

%o[n] = 1 (@[n] — 3 [~n)) iIm{ X[k}

EEEC20034: Intro. to Digital Signal
£ Processing
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Symmetry Properties of the DFT

e It shows decomposition of periodic sequence into sum of a conjugate symmetric and a
conjugate antisymmetric sequence.

e This suggests decomposition of finite-duration sequence x|n] into the two finite-duration
sequences of duration N corresponding to one period of the conjugate symmetric and
conjugate antisymmetric components of X[n]. Denote these components of x[n] as

X [N] @nd x,; [n]

e With X[n]= x[((n))N ] the conjugate symmetric part being %, [n] = %(X[n] +X [-n]),

and conjugate antisymmetric part being %, [n] = %(i[n]— X" [-n]), define
X [N]=%.[n], 0<n<N-1
Xo [N]=%,[n], 0<n<N-1

l.e. both x,, [n] and x,, [n] are finite-duration sequences

= EEEC20034: Intro. to Digital Signal
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Symmetry Properties of the DFT

1

Then Xep[n]=§(X[((”))N}+X*[((_n))ru ])
Xop [n] - %(X[((n))N } -X [((_n))N })’ 0
N

<
Since both sequences are finite, and since ((—n))N =(N-n)

then we can write these sequences as

X [n]{;{x[”]ﬂ*[N -n]}, 1<n<N-1

Re{x[0]}, n=0

X [n]{;{X[n]x*[N -n]}, 1<n<N-1

jim{x[0]}, n=0

This avoids the use of ((n)) . They are also not equal to x, [n]

nor x, [n] = %(x[n] X [—n]) =—X,[-n], resp.

EEEC20034: Intro. to Digital Signal
F  Processing
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Symmetry Properties of the DFT

We also have
X[n]=%[n]+%[n] = x[n]=%X|n]=%[n]+X,[n], forO<n<N-1

= Xep [n]+ Xop [n]
Re{x[n]} & X,, K] ——{x[(0), J+x[((%)), ]
iim{x[n]} & X,y [K] X [((0), - [(=+), ]

= X, [n] < Re{X[k]} Xep [N] > JIM{ X [K]}

EEEC20034: Intro. to Digital Signal
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Symmetry Properties of the DFT

If x|n]real, X|K]

41
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Circular Convolution of the DFT

N-1
From the DFS circular convolution: %,[n]=>"X,[m]% [n—m], circular convolution for

m=0

the DFT

x
(9
| |
>
| S|
Il
2
=

<
—
—~~
3
~
~
=z
| I—
x
N
1
—
—~~
>
I
=
~
N—
L1
o
IA
>
VAN
Z
I
|

Since ((m))N =m for0<m< N -1, then

x

w

| — |
>

|
Il

3
o

i g Al g AR g il g
1}

I
P

[n] (N) x[n]
where N denotes N -point circular convolution
Also, X [n] (N)x,[n] & X, [K] X, [K]

EEEC20034: Intro. to Digital Signal
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'Example 1: Circular Convolution
‘ L1

0 N m

xy[m]

——+ o+ 1+ ++ 9+ —+ o+ —+ —
O N m

H[((0-m)y.0=m=N-1

dall

0 N m

L[((1-m)y].0=m=N-1

] 1] .
0 N
x3[n] =x[n] @ x[n]

E“llv

m

n

Figure 8.14 Circular convolution of a finite-length sequence x;[n] with a single
delayed impulse, x;[n] = &[n —1].

EEEC20034: Intro. to Digital Signal
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Example 2: Circular Convolution (Aliasing)

N -point circular convolution of two

constant sequences of length N. Let l‘ ‘ ‘ ‘ ‘ ‘ 1l
L =6 forx [n] and x,[n]. Let ! . _
N =L, then )

N1 {N, k=0,

n : x;[n]
Xi[k]= X, [k]= 2 Wy" = 0, else HHH

n=0
] N "

N?, k=0, ®
= ke =0

N
< X%[n]=N, 0<n<N-1 HHH

0 N "

x;[n] =x[n] @ x5 n]

Note the result we get in Figure 8.15 is ()
different from that of linear convolution Figure 8.15  N-point circular convolution of two constant sequences of length NV.

EEEC20034: Intro. to Digital Signal
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“xample 2: Circular Convolution (Alias-free)

1 xi[r]
If we now perform a N = 2L-point circular convolution M

0 L N

with x, [n] and x, [n] by appending L zeros to both @
sequences, then

1 xa[n]
1_WLk
Xy[k]= X, [k]=="—4" M

1_W’\'l< ' 0 L N n
So the result becomes 1 l((~m)yl.0=n=N-1
L ..
XL k=X [k|X,[k|= N , S o0 L N
K=K -
where N = L. B(Q2-m)yl.0=n=N-1
Now the result in Figure 8.16 matches the result we ]| | | | | |
would have obtained if we were to perform linear 0 : x ;
convolution between x,[n] and x,[n]. @

Therefore, unlike the relationship between linear
x3[n] = xy[n] ) x, (1]

convolution and multiplication for the DTFT, linear L
convolution and DFT multiplication may result in 1 | | | | | I

different sequences depending on the number of points of 0 L N "

DFT we perform. This is due to the inherent periodic (@)

nature of the 2 sequences X [n] and x [n] Figure 8.16 2L-point circular convolution of two constant sequences of
1 2 length L.

EEEC20034: Intro. to Digital Signal
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Linear Convolution Using DFT

Why use the DFT? There are fast DFT algorithms (FFT), so it
might be more computational efficient to do all your processing in
the transformed domain, followed by inverse operation to transform
the result back into time-domain. However, we do not want the
result of circular convolution, but rather, that of linear convolution.
As seen in the preceding example, this can be accomplished by
choosing the appropriate value for N.

How do we do it?
1. Compute the N-point DFT of x,[n] and x,[n], separately
2 Compute the product X;[K] = X, [K]X,[K]
3. Compute the N-point IDFT of X;[K]=2>X5[n]
Problems
o Aliasing
o Very long sequence

EEEC20034: Intro. to Digital Signal
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Aliasing 00

xz[n] = xy[n] # xz(n]

Let x,[n] be an length L sequence 1] I I ‘ ‘ [ e

Let x,[n] be an length P sequence
In oréler to avoid aliasing, N > L+P-1

b)

1] 11111,

%5 [N]=%[n] (N) %, [n] w

(c)
D> %[n-rN], 0<n<N-1, { gl
=\ r r | | ] | l l ] I . ;
0, else “ o
where X[n] is the result of the linear { { { { { N Rz
convolution between x,[n] and x,[n]. L
X3,[N] Is of this form because of the
inherent periodicity of x,[n] and x,[n]. . I
So when the circular convolution Is 1] ] ’ ‘ B e
performed, the tail of x,[n]/X,[n] will ~  ——==ereer L Proo
wrap around to the head of
X,[n]/x,[n]. Therefore, aliasing in time comvoluion folowed b alizing. () The sequences 1) and xelr] 10 b
will occur if N < L+P. (vl 01 1 6.0 ] 8 1, whi 1o o he suma 6,0

and (d) in the interval 0 < n < 5. () xy[n] 2) Xz [n].

= EEEC20034: Intro. to Digital Signal
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Aliasing (Partial Distortion)

If N=L=P, then all the i b
samples of X3o[N] are
corrupted by allasmg 0 L
However, If P < L=N, then @
only some of the samples In
X3,[N] are corrupted, while
the rest of it will equal to
Xs[n]. Specifically, the first
P-1 points of the result are
Incorrect, while the
remaining points are
Identical to those that would
be obtained from linear "
convolution (see Figure

Figure 8.19  An example of linear
8 . 2 1) . convolution of two finite-length
sequences.

' EEEC20034: Intro. to Digital Signal
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Aliasing (cont’d)

X,[n] pad with zeros -

length N

X,[n] pad with zeros -

length N
Interpretation: (Why call
It aliasing?)

o X4[K] has a (time domain)
bandwidth of size L+P-1.
That is, the nonzero values
of x5[n] can be at most L+P-
1. Therefore, X;[k] should
have at least L+P-1
samples. If the sampling rate
Is insufficient, aliasing
OCCUrs on X;[N].

' EEEC20034: Intro. to Digital Signal
9 ' Processing

Al

n+L],0=n=L-1

0

(c)

HUH‘\ -

0

(d)
Figure 8.20 Interpretation of circular convolution as linear convolution followed
by aliasing for the circular convolution of the two sequences x1[n] and xa[n] in
Figure 8.19.
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—_—
x3pn] = xi[n] ) x2[].
N=L
|
0 L n
P_1
(b)
x3[n]
0 N n
(¢} /
f’”___
x3p[n] = xq[n] N) xa[n),
N=L +P-1
|
o N n

(d)

Figure 8.21 lllustration of how the
result of a circular convolution “wraps
around.” (a) and (b) N = L, so the
aliased “tail” overlaps the first (P — 1)
points. (c)and (d) N = (L + P —1), s0
no overlap oceurs.

EEEC20034: Intro. to Digital Signal

Processing
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FIR Filtering

How do we obtain output of filter if the input sequence is
“Iinfinitely” long (or unknown length)
o E.g. speech recognition system

o Solution (block convolution)
Partition input sequence into blocks
Perform convolution for each block of data
Somehow combine the results from each block processed

o Efficient block convolution can be carried out in frequency
domain

Two methods
o Overlap and add (overlap-add)
o Overlap and save (overlap-save)

= EEEC20034: Intro. to Digital Signal
F  Processing
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Overlap-Add

Partition the long sequence into non-overlapping
sections of shorter length. For example, the filter

impulse response h[n]| has finite length P and the

input data x[n] is nearly "infinite".
Letx[n]= ixr [n—rL]

where x,[n] = {[n+rL] 0<n<L-1

ixr[k—rL:h[n—k]

0, otherwise => > x.[k=rL]h[n-k]
r=0 k
The system (filter) output is a linear convolution. [l ]
Since linear convolution is a time-invariant ®
. =Y y,[n—rL] where y, [n]=x,[n]*h[n]
operation, then = o

Remark: The convolution length is L+P-1. That is, the L+P-1 point DFT is
used. y,[n] has L+P-1 data points, among them, (P-1) points should be
added to the next section. Hence, the input sequences are each padded with
extra zeros at the end to make them both to have length L+P-1.

= EEEC20034: Intro. to Digital Signal
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Figure 8.22 Finite-length impulse response f1[ n] and indefinite-length signal x [ n]
1o be filtered.

Key idea: the input data are partitioned
into nonoverlapping sections = the
section outputs are overlapped and added
together

EEEC20034: Intro. to Digital Signal
Processing
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Figure 8.23 (a) Decomposition

of x[n] in Figure 8.22 into
nonoverlapping sections of length L.
(b) Result of convolving each section
with fi[n].
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Overlap-Save

O&S implements an L-point (O&A implements an
L+P-1 circular convolution) circular convolution for a
length L and length P sequence, where P < L. LetN =
L, then (as seen earlier) only the first P-1 points of the
result are incorrect. Taking this into consideration, a
new strategy Is devised for filtering a long length signal
(of length L).

Steps
1. Partition the long sequence into overlapping sections

2. After computing DFT and IDFT, throw away some
(incorrect) outputs

3. For each section (length L, which is also the DFT size), we
want to retain the correct data of length L-(P-1) points

. EEEC20034: Intro. to Digital Signal
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Overlap-Save (cont’d)

i x3[n)

Let h[n] be of length P.

Let x, [n] be of length L (L > P) ‘ ‘ [ { ‘
Then, y, [n] contains P —1 incorrect ! I T oo ool

0 L } 2L n
points at the beginning. L+P-l
Therefore, we divide x[n]into sections @

of length L but each section overlaps

the preceding section by P —1 points, ' i: L

that is, we define the sequence of each

section to be

X [n]=x[n+r(L-P+1)-(P-1)], O<n<L-1 ° L "
(b)

EEEC20034: Intro. to Digital Signal
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Overlap-Save (cont’d)

Then, circularly convolve each section, x, [n], with h[n]. Since the first P-1

samples are incorrect, after the (circular) convolution has taken place, simply
discard these samples. The remaining samples from successive sections are
put adjacent to each other to form the final output y[n], i.e.

y[n]:iyr[n—r(L—P+1)+ P-1]
r=0
where

_ yrp[n], P-1<n<L-1
ay { 0, else

where y, [n] is the result of the circular convolution for the r™ section.

= EEEC20034: Intro. to Digital Signal
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xg[n] L-(P-1)
L-1

™\

xq[m]

imlm““ﬂ”ww :

x2[n]

il

i L1
“ll]“]lﬂ[ "

voplnl

1;*

0

TTTTTT!1- N
1

;_}*““ 'TTT””_”U .
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-1
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(b)
Figure 8.24 (a) Decomposition of x[n] in Figure 8.22 into overlapping sections

of length L. (b) Result of convolving each section with h[n]. The portions of each
filtered section to be discarded in forming the linear convolution are indicated.
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Overlap-Save: Matrix Representation

If you recall, assuming that P =3 and L =5, the linear convolution between h [n]

and x[n] can be written in matrix form as

y[0]] [h[o] o

y[1]| | h[z] h[o] x[0]

y[2]| |h[2] h[z] h[o] X[1]

y[3] |= h[2] h[t] h[o] x[2]

y[4] h[2] h[] h[o] || x[3]

y[5] h[2] h[L] |[x[4].

y[el] | h[2]]

y = HXx

Since convolution is a commutative operation, we can also write
y[o]| |x[0]

y[a] | | x[1] x[O]

y[2]| | x[2] x[1] x[o]|{h[o]
y[3]|=| x[3] x[2] x[1] | h[1]
y[4]] | x[4] x[3] x[2]|[h[2]
y[5] x[4] x[3]
y[el] | x[4]]

y =Xh

EEEC20034: Intro. to Digital Signal
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Overlap—Save: Matrix Representation (cont’d)

mzox[m]h[((n m)) ] 0<n<N-1
=x[n] (N) h[n]
=N_1h x[(n m) } 0<n<N-1
=h[n] (N) x[n]
h[n]
X[n] I
\ 1t l;(IockJ \2”0' B|0ij \ 1st t;iockj \ 2”0'TJIOCI:

For N = L, the N-point circular convolution will be equal to the linear
convolution except for the initial P-1 points in the result. The figures
above show the (periodic extension with 2 periods only) impulse responses
of x[n] (blue) and h[n] (red). Therefore, the circular convolution can be
written in matrix form as

EEEC20034: Intro. to Digital Signal
F  Processing
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Overlap-Save: Matrix Representation (cont’d)

N-1 h[n] is regarded as a finite-duration sequence, but for
y [n] . x[m] h |:(( )) }, 0<n<N-1 , ease of visualization, we create another cycle
m=
|
h[-1]; h[0] h{-L] h{O]
n=0 h[-2] : h[-2] :
E I
- = 1 = = i
:h[-l] h[0] :h[—l] h[0]
h[-2]1 h[-2]i
n=1 1 |
I K
h[-1] h[0] : h[-1] h[O] At n= 2 (3and 4), output
I of circular convolution
> h[-2] -2l equals to that of linear
= ]’ ]’ convolution due to the 2
o o o o zeros inserted in each

[
I
: cycle

X[0] x[3] x[4]; x[0] x[3] x[4]

|
[
|
i
EEEC20034: Intro. to Digital Signal
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Overlap-Save: Matrix Representation (cont’d)

add

_______ . | x[3
y h[2] h[1]: h[o] ] x[4
y h[2] h[1] h[o] x[0
y[2]|= h[2] h[1] ho] 1
j[3 h[2] h[1] h[o] X[2
y[al) h[2] h[a] h[o]j| x[3
X4
y[o]| [no] h[2] h{a] |[x[o]
y[1] | | h[x] h[o] h[2] || x[1]
<|y[2]|=|h[2] h[1] h[o] x[2]|=¥
y[3 h[2] h[t] h[o] X[3
y[4 h[2] h[1] h{o]][x[4

EEEC20034: Intro. to Digital Signal
F Processing
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Overlap—Save: Matrix Representation (cont’d)

N-1 x[n] is regarded as a finite-duration sequence, but for
= h m] X|:( )) }, 0<n<N-1 ease of visualization, we create another cycle

m=0
|
| X(-4] X[-11X[0] § X[-4] X[-1] X[0]
| G ® > > G ® > >

n=0 |
|
X[-4] x[-q X[0] x[-4] x[-1] x[O] x[-4] X[-1] x[O]

X[-l] x[0] x[-4]

h[1] h[0]| h[1]

[
" h[2] ‘ " h[2]
EEEC20034: Intro. to Digital Signal
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Overlap-Save: Matrix Representation

(cont’d)

Due to the commutative property of the convolution, | can also write

this as
l shift ‘
y[of] [x[4] x[3] x[2] x[2 x[o]][hp]
y[1]| | x[0] x[4] x[3] x[2] x[1] | h[2]
y[2]|=| x[2] x[0] x[4] x[3] «x[2]|| ©
y[3]| |x[2] x[1] x[0] x[4] x[3]|| O
19[4 [x38] x[2] x[1] x[0] x[4]][h[o],
y[0]] [x[0] x[4] x[3] x[2] x[1]][h[0]]
y[a ] | x[2] x[o] x[4] x[3] x[2]|l h[]
<|9[2]|=(x[2] x[1] x[0] x[4] x[3]| h[2]|=¥
uEl x|3] x[2] x|1] x|0] x|4 0
y[4]] [x[4] x[3] x[2] x[1] x[o]jl o |

L]
1
X
o

EEEC20034: Intro. to Digital Signal
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Overlap-Save: Matrix Representation

(cont’d)

Note that §[0] and §[1] are corrupted by samples from the previous block.
These are the first P —1 samples of the output. Only y[2]=§[2], y[3]=¥[3]
and y[4]= §[4] are valid. Also, §[5] and §[6] (not shown) will be corrupted
by the next block, so they will be discarded as well.

For any circulant matrix H, it can be diagonalized by IFFT matrix W, i.e.

- H - 1 %k
H=W,A, Wy, where the (k,n) element of W,  is [W, | =——e""

kn \/ﬁ

0,1,...N-1. Thatis, the diagonal elements of A,, contains the DFT coefficients

 fork,n=

of the first column vector of H.

Note: This can always be done regardless of the values of H as long as
H is circulant, i.e. structure requirement is the only requirement.

EEEC20034: Intro. to Digital Signal
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