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Introduction

 The DTFT is a theoretical tool to evaluate the frequency response of 
signals and systems
 Unfortunately, it cannot be computed using a digital computer
 Solution: Sample the frequency spectrum  DFT
 Unlike the CTFT, the DTFT does not have a duality relationship, i.e. if 

x(t) ⇔ X(jΩ), then X(t) ⇔ 2πx(-jΩ), but no such relationship exists 
between x[n] and X(ejω)
 As seen in the sequel, there is a duality relationship between x[n] and X[k]

 Idea:
 Sample the (continuous) function X(ejω)

 Corresponding function in time now also becomes periodic (but still 
discrete-time (this is the DFS)

 Crop out one period of the sequence in time and frequency domain 
DFT
 However, there is an inherit periodicity in the time and frequency signals 

(more later)
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Discrete-Fourier Series (DFS)
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Discrete-Fourier Series (DFS)
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The DFS representation of  thus becomes
Synthesis equation:

                        

Analysis equation:
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Is this relationship true?
To show that the analysis and synthesis equations are indeed true, we can derive
the analysis equation from the synthesis equation.  But first, we need to show that
the following property is true:
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How come the DFS relationship is true?
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Example: Periodic Rectangular Pulse Train
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Properties of the DFS
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Properties of the DFS (cont’d)
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Properties of the DFS (cont’d)
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Properties of DFS: Periodic Convolution 
(Circular Convolution)
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CTFT of Periodic Signals
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CTFT of Periodic Signals (cont’d)
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Fourier Transform of Periodic Signals

 Recall from Chapter 2 that the DTFT of a periodic sequence is represented by 
impulse train.  This is because periodic signal has neither uniform convergence 
nor mean-square convergence since it is not absolutely summable nor square 
summable.  As n±∞, the sequence does not go to zero

 With the knowledge about the DFS, we will show that DFS is actually a 
sampled version of the DTFT (via examples below) 

 Recall from above that the CTFT of a periodic signal requires the use of 
impulse train in the frequency domain with impulse values weighted by the 
CTFS coefficients for the signal 

 Similarly, in discrete-time domain, the DTFT of a periodic sequence is 
represented by a impulse train in the frequency domain weighted by impulse 
values proportional to the DFS coefficients for the sequence, i.e. 

 Note the            has periodicity of 2π because          is periodic with N and the 
impulses are spaced at integer multiples of 2π/N
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Here, we want to show that the DFS coefficients are a sampled version of the DTFT.
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Example 2 (cont’d)
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The DTFT of the sequence is



Example 2 (cont’d)
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Sampling the Fourier Transform

 As seen from the above,          is 
periodic in k with period N.  Since the 
Fourier transform is equal to the z-
transform evaluated on the unit circle,                 
can be obtained by sampling X(z) at N
equally spaced points on the unit 
circle

 We have seen that          is the DFS 
coefficient of           and          is a 
sampled version of the DTFT of x[n].  
So we formally derive the relationship 
between x[n] and         (as we have 
seen before, x[n] represents one of 
period of           ).

 We can actually draw parallels in the 
relationship between x[n] and            
with that of X(jΩ) and X(ejω)
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Comparison With Uniform Sampling 
in Time
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Relationship Between x[n] and 
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Aliasing in Time

 In Figure 8.8, we show that if we sample 
X(ejω) with high enough N, then x[n] can be 
recovered from         by extracting one period 
of          .  But if we do not sample with 
enough N (Figure 8.9), then we will have 
aliasing in time.  In that case, we will not be 
able to recover x[n] from 

 If x[n] has finite length and we take a 
sufficient number of equally spaced samples 
of its Fourier Transform (a number greater 
than or equal to the length of x[n]), then x[n] 
is recoverable from 

 Two ways (equivalently to define the DFT):
1) N samples of the DTFT of a finite duration 

sequence x[n]
2) Or, make the period replica of x[n] 

Take the DFS of     
Pick up one segment of 
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Figure 8.8 (a) Finite-length sequence x[n].  (b)  
Periodic sequence          corresponding to sampling the 
Fourier transform of x[n] with N = 12.
Figure 8.9 Periodic sequence           corresponding to 
sampling the Fourier transform of x[n] in Figure 8.8(a) 
with N = 7.
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Discrete Fourier Transform (DFT)
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DFT (cont’d)
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Remarks:
• DFT formula is the same as DFS formula. Indeed, many properties of DFT are 
derived from those of DFS.

• Keep in mind that X[k] is equal to samples of the X(ejω), and if the synthesis 
equation is evaluated outside the interval 0 ≤ n ≤ N-1, then the result will not be 
zero but a periodic extension of x[n].  This inherent periodicity is always present!



DFT Example
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Consider the sequence:  
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Let  be the periodic extension of .
For the first case, let
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and for the second case, let
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, else




In two cases, we can see that if we sample faster, then more information about
the original DTFT can be shown, i.e. both DFTs (N=5 and N=10) contain same
amount of information, but the extra information shown in the N=10 case is just
hidden in the N=5 case. Remember, to get the 10-point DFT, we have simply
zero-padded the original sequence, nothing more.



DFT Example (cont’d)
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IDFT Matrix

 The IDFT and DFT is a linear transform
 The computation can thus be represented using a matrix multiplication

 The (n,k)th element of an N×N matrix N-point IDFT matrix WN is 
This is a symmetric (but complex-valued) matrix

 Example:

 DFT coeff. vector xk = WN
Hx, where xk is a N×1 vector containing the DFT coefficients X[k], 

and x is a N×1 vector containing the time domain sequence x[n]
 The DFT matrix can be generated by matlab using the function dftmtx.  Note that this 

generates a unnormalized version of the DFT matrix, i.e. WN is only an orthogonal matrix, 
NOT orthonormal, so WN WN

H = NIN not IN
 Properties of the IDFT matrix

 WN = WN
T, i.e. WN is symmetric

 WN
H = WN

*

 WN
-1 = WN

*
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Properties of the DFT
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[ ] [ ]

[ ] [ ] [ ] [ ] [ ]1
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2 2
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Linearity:

                                            

                            (                   then 
Circular Shift:
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Proof of Circular Shift Property
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From the definition of the DFT, we know that
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Then it follows that shifting property of the DFS that
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Then from the definition of the DFT
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Therefore,

, 0 1
                       

0, .
: This is a circular shift, not linear shift.  (Linear shift of a periodic sequence

 

N

N

x n m x n m

x n x n m n N
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else
Remark
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  = − ≤ ≤ −  = 






              = circular shift of a finite sequence.)
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Example: Circular Shift

[ ] ( )( )
[ ] [ ] ( )( )

[ ]

6

1 6

1

We have .  We want to obtain

2 2 .  This is shown in

Figure 8.12(c).  Figure 8.12(d) shows a single
period of .

x n x n

x n x n x n

x n

 =  
 = + = + 
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Duality Property of the DFT

[ ] [ ]
[ ] ( )( )

Duality:
             If 

             then ,   0 1
N

X n Nx k k

x X

N

n k

 ↔ − ≤ ≤ − 

↔

Example:
Consider the finite length sequence x[n] 
shown in Figure 8.13(a).  Figures 8.13(b) 
and 8.13(c) show the real and imaginary 
part of X[k].  To show the duality property, 
we relabel the k-axis in Figures 8.13(b) 
and (c) to be n-axis, shown in Figures 
8.13(d) and (e).  According to the duality 
property, Figure 8.13(f) shows the DFT of 
the complex-valued sequence of Figures 
8.13(d) and (e).
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x n X k

x n X k N
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Table 8.1:   DFS properties
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[ ]

 It shows decomposition of periodic sequence into sum of a conjugate symmetric and a
   conjugate antisymmetric sequence.  
  This suggests decomposition of finite-duration se  into quen the two fice x n

•

•

[ ] [ ]
[ ] [ ]

nite-duration
    sequences of duration  corresponding to one period of the conjugate symmetric and
    conjugate antisymmetric components of .  Denote these components of  as
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Symmetry Properties of the DFT
[ ] ( )( ) ( )( )( )
[ ] ( )( ) ( )( )( )
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[ ] [ ] [ ] [ ] [ ] [ ] [ ]
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We also have       
                 

1Re
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From the DFS circular convolution:  ircular convolution for
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on

A  l   so        ,   

N

N
m

n N

x n x n

x m x n m

N

−

=

 = −  ≤ ≤ −

=

∑

[ ] [ ] [ ] [ ]11 2 2             Xn kn x k Xx ↔



Example 1: Circular Convolution
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Example 2: Circular Convolution (Aliasing)
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-point circular convolution of two
constant sequences of length .  Let

6 for  and .  Let
,  then
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ult we get in Figure 8.15 is
different from that of linear convolution



Example 2: Circular Convolution (Alias-free)
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[ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

1 2

1 2

3 1 2

If we now perform a 2 -point circular convolution
with  and  by appending  zeros to both
sequences, then

1              .  
1

So the result becomes

1          
1

Lk
N

k
N

LK
N

k
N

N L
x n x n L

WX k X k
W

WX k X k X k
W

=

−
= =

−

−
= =

−

2

,

where .N L

 
 
 

=

Now the result in Figure 8.16 matches the result we 
would have obtained if we were to perform linear 
convolution between x1[n] and x2[n].
Therefore, unlike the relationship between linear 
convolution and multiplication for the DTFT, linear 
convolution and DFT multiplication may result in 
different sequences depending on the number of points of 
DFT we perform.  This is due to the inherent periodic 
nature of the 2 sequences x1[n] and x2[n].



Linear Convolution Using DFT

 Why use the DFT?  There are fast DFT algorithms (FFT), so it 
might be more computational efficient to do all your processing in 
the transformed domain, followed by inverse operation to transform 
the result back into time-domain.  However, we do not want the 
result of circular convolution, but rather, that of linear convolution.  
As seen in the preceding example, this can be accomplished by 
choosing the appropriate value for N.

 How do we do it?
1. Compute the N-point DFT of x1[n] and x2[n], separately
2. Compute the product X3[k] = X1[k]X2[k]
3. Compute the N-point IDFT of X3[k]x3[n]

 Problems
 Aliasing
 Very long sequence
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Aliasing

 Let x1[n] be an length L sequence
 Let x2[n] be an length P sequence
 In order to avoid aliasing, N ≥ L+P-1

where x3[n] is the result of the linear 
convolution between x1[n] and x2[n].  
x3p[n] is of this form because of the 
inherent periodicity of x1[n] and x2[n].  
So when the circular convolution is 
performed, the tail of x1[n]/x2[n] will 
wrap around to the head of 
x1[n]/x2[n]. Therefore, aliasing in time 
will occur if N < L+P.
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[ ] [ ] [ ]

[ ]

3 1 2

3

        

, 0 1,

0,

p

r

x n x n x n

x n rN n N

else

=


− ≤ ≤ −= 



∑



Aliasing (Partial Distortion)

 If N=L=P, then all the 
samples of x3p[n] are 
corrupted by aliasing.  
However, if P < L=N, then 
only some of the samples in 
x3p[n] are corrupted, while 
the rest of it will equal to 
x3[n].  Specifically, the first 
P-1 points of the result are 
incorrect, while the 
remaining points are 
identical to those that would 
be obtained from linear 
convolution (see Figure 
8.21).
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Aliasing (cont’d)

 x1[n] pad with zeros 
length N

 x2[n] pad with zeros 
length N

 Interpretation: (Why call 
it aliasing?)
 X3[k] has a (time domain) 

bandwidth of size L+P-1.            
That is, the nonzero values 
of x3[n] can be at most L+P-
1.  Therefore, X3[k] should 
have at least L+P-1  
samples.  If the sampling rate 
is insufficient, aliasing 
occurs on x3[n].
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FIR Filtering

 How do we obtain output of filter if the input sequence is 
“infinitely” long (or unknown length)
 E.g. speech recognition system
 Solution (block convolution)

 Partition input sequence into blocks
 Perform convolution for each block of data
 Somehow combine the results from each block processed

 Efficient block convolution can be carried out in frequency 
domain

 Two methods
 Overlap and add (overlap-add)
 Overlap and save (overlap-save)
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Overlap-Add
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Partition the long sequence into 
sections of shorter length.  For example, the filter
impulse response  has finite length  and the

input data  is nearly "infinite"
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.
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Remark:  The convolution length is L+P-1.  That is, the L+P-1 point DFT is 
used.  yr[n] has L+P-1 data points, among them, (P-1) points should be 
added to the next section.  Hence, the input sequences are each padded with 
extra zeros at the end to make them both to have length  L+P-1.



Overlap-Add (cont’d)
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Key idea: the input data are partitioned 
into nonoverlapping sections  the 
section outputs are overlapped and added 
together



Overlap-Save

 O&S implements an L-point (O&A implements an 
L+P-1 circular convolution) circular convolution for a 
length L and length P sequence, where P < L.  Let N =
L, then (as seen earlier) only the first P-1 points of the 
result are incorrect.  Taking this into consideration, a 
new strategy is devised for filtering a long length signal 
(of length L).

 Steps
1. Partition the long sequence into overlapping sections
2. After computing DFT and IDFT, throw away some 

(incorrect) outputs
3. For each section (length L, which is also the DFT size), we 

want to retain the correct data of length L-(P-1) points
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Overlap-Save (cont’d)
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Overlap-Save (cont’d)
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[ ] [ ]Then, circularly convolve each section, , with .  Since the first -1
samples are incorrect, after the (circular) convolution has taken place, simply
discard these samples.  The remaining samples f

rx n h n P
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[ ] ( )

[ ] [ ]

0
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Overlap-Save: Matrix Representation
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Overlap-Save: Matrix Representation (cont’d)
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For N = L, the N-point circular convolution will be equal to the linear 
convolution except for the initial P-1 points in the result.  The figures 
above show the (periodic extension with 2 periods only) impulse responses 
of x[n] (blue) and h[n] (red). Therefore, the circular convolution can be 
written in matrix form as

x[n]
h[n]

1st block 2nd block 1st block 2nd block

[ ] [ ] ( )( )

[ ] [ ]

[ ] ( )( )
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h[0]h[-1]

h[-2]

h[-1]

h[-2]

h[0]

h[0]h[-1]

h[-2]

h[-1]

h[-2]

h[0]

Overlap-Save: Matrix Representation (cont’d)
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x[4]x[3]x[0]x[4]x[3]x[0]

[ ] [ ] ( )( )
1

0
, 0 1

N

N
m

y n x m h n m n N
−

=

 =  ≤ ≤− −∑
h[n] is regarded as a finite-duration sequence, but for 
ease of visualization, we create another cycle

n=0

n=1

n=2

h[0]h[-1]

h[-2]

h[-1]

h[-2]

h[0]

At n = 2 (3 and 4), output 
of circular convolution 
equals to that of linear 
convolution due to the 2 
zeros inserted in each 
cycle



Overlap-Save: Matrix Representation (cont’d)
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x[0]x[-1]x[-4]

Overlap-Save: Matrix Representation (cont’d)
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x[n] is regarded as a finite-duration sequence, but for 
ease of visualization, we create another cycle
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Overlap-Save: Matrix Representation 
(cont’d)
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Note that 0  and 1  are corrupted by samples from the previous block. 

These are the first 1 samples of the output.  Only 2 2 ,  3 3

and 4 4  are valid.  Also, 5  and 6  (not shown) will be 
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corrupted
by the next block, so they will be discarded as well.

For any circulant matrix , it can be diagonalized by IFFT matrix ,  i.e.

,  where the ,  element of  is , for1  

N

j kn
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N N kn
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N H N k n e
N

π

==

H W
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 ,

0,1, -1.  That is, the diagonal elements of  contains the DFT coefficients

of the first column vector of .

:   This can always be done regardless of the values of  as long as
 is circulan

H

k n

N

=

… Λ

H

Note H
H





 t, i.e. structure requirement is the only requirement.
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