
Computation of the DFT

Carrson C. Fung
Institute of Electronics
National Yang Ming Chiao Tung University

2
EEEC20034: Intro. to Digital Signal
Processing 2

Overview

 Efficient algorithms for computing the DFT
 Fast Fourier transform (FFT)

 Many types of FFTs
 Radix-2 (DIT, DIF), Composite N (Cooley-Tukey), Winograd,

Chirp transform, …
 Principle lies in divide and conquer

 Efficient criteria
 Number of multiplications
 Number of additions
 Chip area in VLSI implementation

3

DFT as a Linear Transformation

 Recall that the DFT can be regarded as linear transformation
 Can be computed using matrices

 DFT:

 Let

and

EEEC20034: Intro. to Digital Signal
Processing 3

[] []

[] []

1

0
1

0

, 0,1, , 1

1 , 0,1, , 1

N
kn

N
n
N

kn
N

k

k n

n

X x W k N

x X W n N
N

k

−

=

−
−

=

= = −

= = −

∑

∑

,

)1(

)1(
)0(

,

)1(

)1(
)0(

−

=

−

=

NX

X
X

Nx

x
x

NN

Xx

()12

2 4 2(1)

(1) 2(1) (1)(1)

1 1 1 1

1
IDFT matrix: , for , 0,11

1

1 , 1

N
N N N

nk N
N N N N

N N N N
N N N

W W W
k n NW W W

W W

N

W

−

−

− − − −

 = = −

W

4

DFT as a Linear Transformation
(cont’d)
 Note that for the matrix notation, I split 1/N in the

synthesis equation to both the IDFT and DFT matrix

 Because the matrix (transformation) WN has a
specific structure and because WN

k has particular
values (for some k and n), we can reduce the number
of arithmetic operations for computing this transform

EEEC20034: Intro. to Digital Signal
Processing 4

2

 -point DFT

 -point IDFT (is an unitary matrix)

 where , ,1 ,0,1, 1

N N

N N

H
N

j kn
N

nk

N N

N e N
N

N

N

n k
π

=

=

== … −

X W x

x W X W

W

5

Example

 Let
 Compute the 4-point DFT
 DFT matrix

 Thus

 Note that to compute each X[k] value, assuming x[n] is complex-valued, it
requires us to perform N complex-valued multiplications and N-1 complex-
valued additions. To compute all N values of the FFT, it requires N2

complex-valued multiplications and N(N-1) additions

EEEC20034: Intro. to Digital Signal
Processing 5

[]0 1 2 3 T=x

0 0 0 0
4 4 4 4
0 1 2 3

4 4 4 4
0 2 4 6 0 24 4 4 4 4 4
0 3 6 9

2 2 21 2 3
4 4 4

2 2 24 2 4 6
4 4 4

2 2 23 6 9
4 4 4

4 4 4 4
3 2 1

4 4 4

1 1 1 1
1 1 1 1

1 1 1

1 2

1

1 1 1
2 2

j j j

H
j j j

j j j

W W W W
e e e jW W W W

W W W W e e W e W
W W W W

e W e W e W

π π π

π π π

π π π

− ⋅ − ⋅ − ⋅

− ⋅ − ⋅ − ⋅

− ⋅ − ⋅ − ⋅

 − − = = = = =

 = = =

W
1 1 1 1
1 1

j

j j

 − −
 − −

4 44

3
1

1
1

H j

j

 − + = =
 −
 − −

X W x

6

Fast Fourier Transform

 Highly efficient algorithms for computing DFT
 General principle: Divide and conquer
 Exploit specific properties of WN

k

 Complex conjugate symmetry: WN
kn = (WN

kn)*

 Symmetry: WN
k+N/2 = -WN

k

 Periodicity: WN
k+N = WN

k

 Particular values of k and n: e.g.radix-4 FFT (no
multiplications: e.g. multiplication by 1 and -1)

EEEC20034: Intro. to Digital Signal
Processing 6

7

FFT

 Direct computation of DFT

 For 1 complex multiplication: x[n]WN
kn requires

 4 real-valued multiplications, 2 real-valued additions
 For each complex-valued addition

 2 real-valued additions
 So, for each k, since we need N complex multiplications and N-1 complex additions

 N complex-valued multiplications = 4N real-valued multiplications and 2N real-valued
additions

 N-1 complex-valued additions = 2(N-1) real-valued additions
 Therefore, 4N real-valued multiplications and 2N+2(N-1) = 4N-2 real-valued additions

 Therefore, to compute all N values of the DFT, we need 4N2 real-valued
multiplications and N(4N-2) real-valued additions.

EEEC20034: Intro. to Digital Signal
Processing 7

() () () ()[]
() () () ()[]∑

∑
−

=

−

=

+⋅
+⋅−⋅

=

−=⋅=

1

0

1

0

Re][ImIm][Re
Im][ImRe][Re

1,,1,0 ,][][

N

n
kn

N
kn

N

kn
N

kn
N

N

n

kn
N

WnxWnxj
WnxWnx

NkWnxkX

8

Radix-2: Decimation-in-Time
Algorithms
 Idea: N-point DFT N/2-point DFT N/4-point DFT

N/4-point DFT
 N/2-point DFT N/4-point DFT

N/4-point DFT
 Sequence: x[0] x[1] x[2] x[3] … x[n/2] … x[N-1]

 Even index: x[0] x[2] … x[N-2]
 Odd index: x[1] x[3] … x[N-1]

EEEC20034: Intro. to Digital Signal
Processing 8

9

Radix-2: Decimation-in-Time
Algorithms (cont’d)

EEEC20034: Intro. to Digital Signal
Processing 9

1

0

 even odd

2 2 1

1 1
2 2

2 (2 1)

0 0

22 2
2 / 2

/ 2

[] [] , 0,1, , 1

[] []

[2] [2 1]

Since

N
kn

N
n

kn kn
N N

n n

n r n r
N N

rk r k
N N

r r

j j
N N

N N

X k x n W k N

x n W x n W

x r W x r W

W e e W
π π

−

=

= = +

− −

+

= =

 − −

= = −

= +

= + +

= = =

∑
∑ ∑

∑ ∑

][][

]12[]2[][

point DFT-
2

1
2

0
2/

point DFT-
2

1
2

0
2/

kHWkG

WrxWWrxkX

k
N

N

N

r

rk
N

k
N

N

N

r

rk
N

+=

++= ∑∑
−

=

−

=

10

Radix-2: Decimation-in-Time Algorithms
(cont’d)
 Note that G[k] and H[k] are periodic in k with a

period of N/2. Therefore for N = 8

 Similar relationship can be exploited to obtain
X[5], X[6], and X[7]

EEEC20034: Intro. to Digital Signal
Processing 10

[] [] []
[] []

4
4

4
4

4 4 4

0 0

X G W H

G W H

= +

= +

11

Comparison

 Direct computation of N-point DFT (N frequency samples)
 N2 complex-valued multiplications and ~N2 (it’s actually N(N-1), but we shall assume N is large)

complex-valued additions
 Direct computation of N/2-point DFT

 We need to perform 2(N/2)-point DFTs, each one will require (N/2)2 complex-valued
multiplications and approximately (N/2)2 complex-valued additions. Therefore, we need to
perform 2(N/2)2 complex-valued multiplications and 2(N/2)2 complex-valued additions

 Combining the 2(N/2)-point DFTs also requires
 an additional N complex-valued multiplications (because we need to multiply the WN

k terms)
 an additional N complex-valued additions (combining the G[k] and H[k] terms)

 Adding everything together, we have:
 N + 2(N/2)2 = N + N2/2 complex-valued multiplications
 N + 2(N/2)2 = N + N2/2 complex-valued additions

 For N>2, N+N2/2 < N2, therefore, this divide-and-conquer approach does decrease the amount of
computations

 log2N-stage FFT
 Since N=2v, we can further break N/2-point DFT into two N/4-point DFT and so on

EEEC20034: Intro. to Digital Signal
Processing 11

12

(N/4)-point DFT: G[k]

EEEC20034: Intro. to Digital Signal
Processing 12

[] []

[] [] ()

[] []

/ 2 1

/ 2
0

/ 4 1 / 4 1
2 12

/ 2 / 2
0 0

/ 4 1 / 4 1

/ 4 / 2 / 4
0 0

2 2 1

2 2 1

N
rk

N
r

N N
kk

N N

N N
k k k

N N N

G k g r W

g W g W

g W W g W

−

=

− −
+

= =

− −

= =

=

= + +

= + +

∑

∑ ∑

∑ ∑

13

(N/4)-point DFT: H[k]

EEEC20034: Intro. to Digital Signal
Processing 13

[] []

[] [] ()

[] []

/ 2 1

/ 2
0

/ 4 1 / 4 1
2 12

/ 2 / 2
0 0

/ 4 1 / 4 1

/ 4 / 2 / 4
0 0

2 2 1

2 2 1

N
rk

N
r

N N
kk

N N

N N
k k k

N N N

H k h r W

h W h W

h W W h W

−

=

− −
+

= =

− −

= =

=

= + +

= + +

∑

∑ ∑

∑ ∑

N/4-point
DFT

N/4-point
DFT

x[1]

x[5]

x[3]

x[7]

WN/2
0

WN/2
1

WN/2
2

WN/2
3

H[0]

H[1]

H[2]

H[3]

14

Combining G[k] and H[k]

 Combining the two
figures above and
realizing that WN/2

k =
WN

2k, we can obtain
Figure 9.5

EEEC20034: Intro. to Digital Signal
Processing 14

15

2-point DFT

 Assuming N = 8, the
(N/4)-point DFT is
actually a 2-point DFT

EEEC20034: Intro. to Digital Signal
Processing 15

16

8-point DIT

 Then substituting the 2-
point DFT structure in
Figure 9.6 into Figure
9.5, we have the
structure in Figure 9.7

EEEC20034: Intro. to Digital Signal
Processing 16

17

Number of Operations

 For a general N-point DFT, and assuming N is still a power of 2, we can decompose
any N-point DFT into 2 (N/2)-point DFT, then the 2 (N/2)-point DFTs can be
further decomposed into 4 (N/4)-point DFTs, then the 4 (N/4)-point DFTs can be
decomposed into 8 (N/8)-point DFTs, and so on until we are left with a 2-point
DFT

 There are a total of v = log2 N number of stages of computations
 Following the same logic as before for the N-point DFT, where we can decompose

it into 2 (N/2)-point DFT, which requires N + 2(N/2)2 complex-valued
multiplications and N + 2(N/2)2 complex-valued additions. Decomposing the (N/2)-
point DFT into (N/4)-point DFT requires us to replace the (N/2)2 term into N/2 +
2(N/4)2. Therefore, we need to perform N+2(N/2 + 2(N/4)2) = N + N + 4(N/4)2

complex-valued multiplications and N+2(N/2 + 2(N/4)2) = N + N + 4(N/4)2

complex-valued additions
 This can be done at most v times, so the number of complex-valued multiplications

and additions is equal to Nv = Nlog2 N

EEEC20034: Intro. to Digital Signal
Processing 17

18

Comparison: DFT vs. FFT

Number of
points N

Direct computations:
complex-valued
multiplications

FFT: Complex-valued
multiplications
(Nlog2N)

Speed
improvement
factor

4 16 8 2.0

8 64 24 2.67

16 256 64 4

64 4,096 384 10.67

256 65,536 2,048 32

1024 1,048,576 10,240 102.4

Further savings is possible if we consider the butterfly

EEEC20034: Intro. to Digital Signal
Processing

FFT in Matrix Form: 4-point FFT

EEEC20034: Intro. to Digital Signal
Processing 19

2

4

Consider the 4-point DFT matrix and consider decimation-in-time in which the inputs are
permuted (bit

1 1 1 1 1 1 1 1
1 1 1

1 1 1 1 1 1
1 1

-reversed) becomes

1
1 1
11

H j jj j

jj j

 − = =
 − − −
 − −

− −
W

2

1
1

1

1j

Even-odd
permutation

x[0]

x[2]

x[1]

x[3]

X[0]

X[1]

X[2]

X[3]

1
4W j= −

0
4 1W =

2
4 1W = −

3
4W j=

x[0]

x[1]

x[2]

x[3]

0
2 1W =

1
2 1W = −

2
2 1W =

3
2 1W = −

General 1024-point FFT Decomposition

EEEC20034: Intro. to Digital Signal
Processing 20

512 512 512
1024

512 512 512

2 2 22 511

512

2

512

even-odd
1024,

permutation

Diag 1, , , ,

FFT Decompo

, for 1024.

, 0

sition

For

, fo ,r ,
2

H
H

H

j j j
N N N

j knH N
kn

N

e e e N

Ne n k

π π π

π

− − −

−

= = −

… =

 …

=

= =

I D W
W

I D W

D

W 1−

E.g. 8-point FFT Decomposition: DIT

EEEC20034: Intro. to Digital Signal
Processing 21

4 4
8

4 4

2 2 22

4

7

4

4

even-odd
8,

permutation

Diag 1, , , ,

F

, for 8

Permutation matrix separates the incoming vector into its even and odd part

or

s

H

H
H

j j j
N N N

N

e e e N
π π π

− − −

= = −

… =

=

I D W
W

I D W

D

c

N/2-pt.
DFT

N/2-pt.
DFT

P

N=8 point decimation-in-frequency butterfly

c0
c1
c2
c3

c4
c5
c6
c7

c2
c4

c6

c1
c3
c5
c7

c0

22

FFT Butterfly

 Butterfly
 Basic unit in FFT

 Two multiplications (see
Figure 9.8 on right)

 Notice that WN
(r+N/2) =

WN
N/2WN

r = -1 WN
r, so the

butterfly with two
multiplications can be turned
into a butterfly with a single
multiplication (multiplication
with 1 and -1 don’t count).
See Figure 9.9 on right

EEEC20034: Intro. to Digital Signal
Processing

23

8-point DIT Using Simplified Butterfly
Structure

Now we have an additional savings by a factor of 2 since at every
butterfly, we have halved the number of multiplications!

EEEC20034: Intro. to Digital Signal
Processing

24

In-Place Computations

 Besides efficient computation of the DFT, the structure in Figure 9.10 also offers an efficient
way to storage the original data and the results of the computations in the intermediate stages

 Each stage of the FFT process has N inputs and N outputs, so we need exactly N storage
locations at any one point in the calculations

 It is possible to reuse the same storage locations at each stage to reduce memory overhead
 Any algorithm which uses the same memory to store successive iterations of a calculation is called an

“in-place” algorithm
 Computation must be done in a specific order

 Let Xm[p] and Xm[q] denote the results from the mth stage of computations and Xm-1[p] and Xm-
1[q] denote the results from the (m-1)th stage of computations. Then the relationship between
the input and output of the butterfly can be written as (see Figure 9.11)

Only two registers are needed for computing a butterfly unit because Xm[p] and Xm[q] are
stored in the same storage registers as Xm-1[p] and Xm-1[q], respectively. This is because once
Xm[p] and Xm[q] are produced from Xm-1[p] and Xm-1[q], there is no need to store Xm-1[p] and
Xm-1[q] anymore, so we can place the new results, Xm[p] and Xm[q], into the storage location of
Xm-1[p] and Xm-1[q]

][][][

][][][

11

11

qXWpXqX

qXWpXpX

m
r

Nmm

m
r

Nmm

−−

−−

−=

+=

EEEC20034: Intro. to Digital Signal
Processing

25

In-Place Computations (cont’d)
In order to retain the in-place computation property, the input data are accessed in the bit-reversed
order. This gives us an easy way to index the data

Note: The outputs are in the normal order (same as the “position”)

Position Binary
equivalent

Bit reversed Sequence
index

6 110 011 3

2 010 010 2

Remark: Index 3 input data is placed at position 6

EEEC20034: Intro. to Digital Signal
Processing

26

In-Place Computations (cont’d)

 We may also place the
inputs in the normal order;
then the outputs are in the
bit-reversed order to obtain
the structure in Figure 9.14

EEEC20034: Intro. to Digital Signal
Processing

27

In-Place Computations (cont’d)

 If we try to maintain the
normal order of both inputs
and outputs, then in-place
computation structure is
destroyed. The structure is
shown in Figure 9.15. There is
no advantage in using this
structure since there is no in-
place computation (cannot
save storage space), and no
easy way to index the data (the
input data are not stored in bit-
reversed order)

EEEC20034: Intro. to Digital Signal
Processing

28

Radix-2 Decimation-in-Frequency
Algorithms

Dividing the output sequence X[k] into smaller pieces

[] []
1

0
, 0,1, , 1

N
kn

N
n

X k x n W k N
−

=

= = −∑

Assuming N = 2v, where v is an integer. If k is even, i.e. k = 2r, then
1

0

1 12
2 2

0
2

1 1
2 2 2

2 2

0 0

2 [] 2 22

[2] [] , 0,1, , 1
2

[] [] () in second term2

[]
2

[]
2

N
kn

N
n
N

N
nr nr

N N
Nn n

N N
Nr n

nr
N N

n n

Nr n rn rN rn
N N N N

NX r x n W r

Nx n W x n W n n

Nx n W x n W

W W W W

Nx n x n

−

=

−
−

= =

− − +

= =

+

= = −

= + ← +

 = + + ⋅

= =

 = + +

∑

∑ ∑

∑ ∑

1
2

2

0

1
2

2
0

[]
2

N

nr
N

n

N

nr
N

n

W

Nx n x n W

−

=

−

=

⋅

 = + + ⋅

∑

∑

EEEC20034: Intro. to Digital Signal
Processing

Radix-2 Decimation-in-Frequency
Algorithms

EEEC20034: Intro. to Digital Signal
Processing 29

[] [] ()

[] () [] ()

[] () ()

1
2 1

0

1 12
2 1 2 1

0
2

11 2 2 12 1 2

0
2

2 1, 0,1, , 1
2

 2 1

Let ,

For

 then
2 2

N
n r

N
n
N

N
n r n r

N N
Nn n

N
NN n rn r

N N
N nn

Nk r r

X r x n W

x n W x n W

N Nn n x n W x n W

−
+

=

−
−

+ +

= =

− − + + +

==

= + = … −

+ =

= +

 → + = +

∑

∑ ∑

∑ ∑

() ()
1

22 1 2 12

0

2

N
N r n r

N N
n

NW x n W
− + +

=

 = +
∑

Radix-2 Decimation-in-Frequency
Algorithms

EEEC20034: Intro. to Digital Signal
Processing 30

()

[] () ()

[] [] () ()

2 1 2
2 2 2

11 2
2 1 2 1

0
2

1
2

2 1 2 1

0 0

Note 1. Therefore

2

So

 2 1
2

1
N N Nr r

N N N
N

N
n r n r

N N
N nn

N

n r n r
N N

n n

W W

Nx n W x n W

NX r

W

x n W x n W

 +

−
−

+ +

==

−

+ +

= =

⋅ −

 = − +

 + = − +

=

=

∑ ∑

∑

[] () []

1
2

1 1
2 2

2 1
/2

0 0

2 2

N

N N

n r n nr
N N N

n n

N Nx n x n W x n x n WW

−

− −

+

= =

 = − + = − +

∑

∑ ∑

[] [] () () ()
1 1

2 22 12 1 2 12

0 0
2 1

2

N N
N rn r n r

N N N
n n

NX r x n W W x n W
− − + + +

= =

 + = + +
∑ ∑

2
/2

nr nr
N NWW =

31

Radix-2 Decimation-in-Frequency
Algorithms (cont’d)

[] []
1

2

0

0

2

1
2

/

2

2 1

[] []
2

2

2

N

n nr
N N

n

N

nr
N

n

NX r x n x n W

WNX r x n x n W
−

=

−

=

 + =

 = + + ⋅

− +

∑

∑

 +−=

 ++=

2
][][

2
][][

Nnxnxnh

Nnxnxng

EEEC20034: Intro. to Digital Signal
Processing

/2 is refers to
the /2-point DFT

nr
N

N
W

32

Radix-2 Decimation-in-Frequency
Algorithms (cont’d)
 We can further break into

even and odd groups (just like
DIT). Again, we can reduce
the two-multiplication
butterfly into one
multiplication. Hence, the
computational complexity is
about (N/2)log2 N. The in-
place computation property
holds if the outputs are in bit-
reversed order (when inputs
are in the normal order)

EEEC20034: Intro. to Digital Signal
Processing

33

Radix-2 Decimation-in-Frequency
Algorithms (cont’d)

EEEC20034: Intro. to Digital Signal
Processing

34

FFT for Composite N

 When N is not a power of 2, but a product of 2 or more
integers, FFT algorithms still exist to compute the DFT

 If N is a prime number, we can simply pad zeros to make
N into an composite integer

 Cooley-Tukey Algorithm: N = N1N2

 DIT and DIF are special cases of Composite N algorithm
where N = 2(N/2) = (N/2)2

 For composite N FFT, we can divide x[n] and X[k] into a
two-dimensional array

EEEC20034: Intro. to Digital Signal
Processing

35

Example

 For x[n] in this case, n1 is the column index and n2 is the
row index. There will be N2 elements in each column (i.e.
N2 number of rows) of the two-dimensional array which
stores x[n].

 For X[k], k1 is the column index and k2 is the row index.
There will be N1 elements in each row (i.e. N1 number of
columns) of the two-dimensional array which stores X[k]

1 1
1 1 2

2 2

1

2 1 2

1
2 1 2

2 2
1 1 2

0 1
Time index: or

0 1

0 1
Freq. index: or

0 1

n N n n

k k

n N
n n N n

n N

k N
k N k k

k N
N k

 ≤ ≤ −
= + ≤ ≤ −

≤ ≤ − = + ≤ ≤ −

= +

= +

EEEC20034: Intro. to Digital Signal
Processing

36

Example (cont’d)
For example: N1 = 2, N2 = N/N1 = N/2, then the input signal x[n] can be arranged
into a 2-dimensional array as

n1

n2

0 1

0 x[0] x[N/2]
1 x[1] x[N/2+1]
.
.

.

.
.
.

N2-1 x[N/2-1] x[N-1]

EEEC20034: Intro. to Digital Signal
Processing

37

Decomposition
Goal: Decompose N-point DFT into two stages: let n = N2n1 + n2 and k=k1 + N1k2

N1-point DFT⊗N2-point DFT

()()
2 1

1 1 2 2 1 2

2 1

2 1
2 1 1 1 2 2 1 2 1 2 2 1

2 1 1 1 2 2
1 2

1

1

0

1 1 2
1 1

2 1 2
0 0

1 1

2 1 2
0 0 1

2 1 2

[] [] , 0 1

[]

[]

[]

[]

k n k n
N N

N
kn

N
n

N N
k N k N n n

N
n n

N N
N k n k n k N n N N k n

N N N N
n n

W W

k
N

X k x n W k N

X k N k

x N n n W

x N n n W W W W

x N n n W

−

=

− −
+ +

= =

− −

= =

= ≤ ≤ −

= +

= + ⋅

= + ⋅ ⋅ ⋅ ⋅

= + ⋅

∑

∑ ∑

∑ ∑

2 1
1 1 1 2 2 2

2
2 1

1

2

1 1

0 0 twiddle
factor

-point

-point

N N
n k n k n

N N
n n

N

N

W W
− −

= =

 ⋅ ⋅

∑ ∑

EEEC20034: Intro. to Digital Signal
Processing

38

Procedure

1
1 1

1
1

1 2

1
1 1

2 1 2 1 2
0 2 2

(1) Compute -point DFT of all rows: (row transform)
0 1

 [,] [] ,
0 1

(2) Each row DFTs are multiplied by twiddle factors:

N
k n

N
n

N N
k N

G n k x N n n W
n N

−

=

≤ ≤ −
= + ⋅ ≤ ≤ −
∑

1 2

2
2 2

2
2

1 1
2 1 2 1

2 2

2
1

1 1 2 2 1
0

0 1
 [,] [,],

0 1
(3) Compute -point DFT: (column transform)

 [] [,]

k n
N

N
k n

N
n

k N
G n k W G n k

n N
N

X k N k G n k W
−

=

≤ ≤ −
= ⋅ ≤ ≤ −

+ = ⋅∑

EEEC20034: Intro. to Digital Signal
Processing

39

Example: N=15 = 3×5 = N1×N2

Row 1 x[0,0] = x[0] x[0,1] = x[5] x[0,2] = x[10] G[0,k1]
Row 2 x[1,0] = x[1] x[1,1] = x[6] x[1,2] = x[11] G[1,k1]
Row 3 x[2,0] = x[2] x[2,1] = x[7] x[2,2] = x[12] G[2,k1]
Row 4 x[3,0] = x[3] x[3,1] = x[8] x[3,2] = x[13] G[3,k1]
Row 5 x[4,0] = x[4] x[4,1] = x[9] x[4,2] = x[14] G[4,k1]

First, perform a 3-point DFT for each of the five rows (Notations: x[n2,n1], G[n2,k1]):

EEEC20034: Intro. to Digital Signal
Processing

40

Example: N=15 = 3×5 = N1×N2

Multiply by 1 2k n
NW

Column 1 Column 2 Column 3

[]0,0G

[]1,0G

[]2,0G

[]3,0G

[]4,0G

[]0,1G

[]1,1G

[]2,1G

[]3,1G

[]4,1G

[]0, 2G

[]1,2G

[]2,2G

[]3,2G

[]4,2G

EEEC20034: Intro. to Digital Signal
Processing

41

Example: N=15 = 3×5 = N1×N2

Compute the 5-point DFT for each of the three columns

X[0,0] = X[0] X[0,1] = X[1] X[0,2] = X[2]
X[1,0] = X[3] X[1,1] = X[4] X[1,2] = X[5]
X[2,0] = X[6] X[2,1] = X[7] X[2,2] = X[8]
X[3,0] = X[9] X[3,1] = X[10] X[3,2] = X[11]
X[4,0] = X[12] X[4,1] = X[13] X[4,2] = X[14]

EEEC20034: Intro. to Digital Signal
Processing

42

Example: N=15 = 3×5 = N1×N2

Computation of N=15-point DFT by means of 3-point and 5-point DFTs

EEEC20034: Intro. to Digital Signal
Processing

43

Example: N=15 = 3×5 = N1×N2 - Butterfly Structure

EEEC20034: Intro. to Digital Signal
Processing

44
EEEC20034: Intro. to Digital Signal
Processing

45

Computational Complexity

 Extension: N = N1N2…Nv
 If N = N1N2

 1. row transform: N2⋅µ(N1)
 2. twiddle factors: N1N2 = N
 3. column transform: N1⋅µ(N2)

 In the example above, when N2 = 5 and N1 = 3. We first have to perform 5 different 3-point DFT
(row transform), so the number of multiplications will be 5 times µ(3), where µ(3) is the number of
multiplications we need to perform for a 3-point DFT. There are 15 twiddle factor multiplications
(counting all trivial multiplications as well). Finally, there are three 5-point DFT to perform in the
last stage, therefore, 3 times µ(5) number of multiplications

 In general if N = N1N2…Nv, then by repeatly applying (*), we have . This is
achieved by continuously breaking down the transform into successively smaller transforms. N(v-1)
accounts for the total number of twiddle factor multiplication. However, it should be N(v-1)/2
because half of the twiddle factors are actually equal to “1” (see example when N = N1N2 = 3*5)

 Note that the way we reduce the number of computations is to obtain efficient algorithms for
implementing the smaller Ni-point transforms with few than Ni

2 multiplications

−+= ∑

=

ν
νµµ

1
)1()()(

i i

i

N
NNN

2 1 1 2

1 2

1 2

() () ()
 (*)() () 1

N N N N N N

N NN
N N

µ µ µ

µ µ

= ⋅ + ⋅ +

= + +

EEEC20034: Intro. to Digital Signal
Processing

46

Special Case: N1 = N2 = … = Nv = 2
() ()

() ()

1 2 2

1 2 4

Radix-2: 2 and log
1

 () multiplications because 2 requires no multiplications
2

Radix-4: 4 and log
1

 () multiplications because 4
2

N N N v N
N v

N

N N N v N
N v

N

ν

ν

µ µ

µ µ

= = = = =

−
=

= = = = =

−
=

 requires no multiplications

 (multiplications by and - can be achieved by interchanging the real and
 imaginary parts). This FFT has few stages than Radix-2 fewer mult

j j
⇒

0 0 0 0
4 4 4 4

1 2 30 1 2 3
4 4 44 4 4 4

4 2 0 20 2 4 6
4 4 44 4 4 4
3 2 10 3 6 9

4 4 44 4 4 4

1 2

2

s

1 1 1 1 1 1 1 1
1 1 1

1 1 1 1 1
1 1 1

For example, let 16 4*4

,

W W W W
W W W j jW W W W
W W WW W W W
W W W j jW W W W

N N N

G n k

 − − = = =
 − −
 − −

= = =

W

[] [] () () () () () ()1 1 1

1 2 2 2 2

1 2

/ 4 1 / 2 3 / 4 ,

 for 0,1, 2,3; 0,1, (/ 4) 1

k k kx n j x N n x N n j x N n

k n N

= + − + + − + + +
= = −

EEEC20034: Intro. to Digital Signal
Processing

47

Radix-4 FFT

Each section Entire structure

EEEC20034: Intro. to Digital Signal
Processing

48

Implementation of Inverse FFT Using
FFT

()

[]

1

0
1

0

*1
*

0

1
*

0

*

1IDFT: [] [] (*)

DFT: [] []

Hence, take the conjugate of (*)

1 [] []

1 []

1 DFT

N
kn

N
k

N
nk

N
n

N
kn

N
k

N
kn

N
k

x n X k W
N

X k x n W

x n X k W
N

X k W
N

X k
N

−
−

=

−

=

−
−

=

−

=

= ⋅

= ⋅

 = ⋅

= ⋅

=

∑

∑

∑

∑

[]

[]()
[]()

*

**

**

Then take the conjugate of
1[] DFT

1 FFT

Thus, we can use the FFT algorithm
to compute the inverse DFT

x n

x n X k
N

X k
N

 =

 =

EEEC20034: Intro. to Digital Signal
Processing

	Computation of the DFT
	Overview
	DFT as a Linear Transformation
	DFT as a Linear Transformation (cont’d)
	Example
	Fast Fourier Transform
	FFT
	Radix-2: Decimation-in-Time Algorithms
	Radix-2: Decimation-in-Time Algorithms (cont’d)
	Radix-2: Decimation-in-Time Algorithms (cont’d)
	Comparison
	(N/4)-point DFT: G[k]
	(N/4)-point DFT: H[k]
	Combining G[k] and H[k]
	2-point DFT
	8-point DIT
	Number of Operations
	Comparison: DFT vs. FFT
	FFT in Matrix Form: 4-point FFT
	General 1024-point FFT Decomposition
	E.g. 8-point FFT Decomposition: DIT
	FFT Butterfly
	8-point DIT Using Simplified Butterfly Structure
	In-Place Computations
	In-Place Computations (cont’d)
	In-Place Computations (cont’d)
	In-Place Computations (cont’d)
	Radix-2 Decimation-in-Frequency Algorithms
	Radix-2 Decimation-in-Frequency Algorithms
	Radix-2 Decimation-in-Frequency Algorithms
	Radix-2 Decimation-in-Frequency Algorithms (cont’d)
	Radix-2 Decimation-in-Frequency Algorithms (cont’d)
	Radix-2 Decimation-in-Frequency Algorithms (cont’d)
	FFT for Composite N
	Example
	Example (cont’d)
	Decomposition
	Procedure
	Example: N=15 = 35 = N1N2
	Example: N=15 = 35 = N1N2
	Example: N=15 = 35 = N1N2
	Example: N=15 = 35 = N1N2
	Example: N=15 = 35 = N1N2 - Butterfly Structure
	Slide Number 44
	Computational Complexity
	Special Case: N1 = N2 = … = Nv = 2
	Radix-4 FFT
	Implementation of Inverse FFT Using FFT
	Slide Number 49
	In-Place Computations (cont’d)
	General 1024-point IFFT Decomposition

