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Overview

 Efficient algorithms for computing the DFT
 Fast Fourier transform (FFT)

 Many types of FFTs
 Radix-2 (DIT, DIF), Composite N (Cooley-Tukey), Winograd, 

Chirp transform, …
 Principle lies in divide and conquer

 Efficient criteria
 Number of multiplications
 Number of additions
 Chip area in VLSI implementation
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DFT as a Linear Transformation

 Recall that the DFT can be regarded as linear transformation
 Can be computed using matrices

 DFT:

 Let

and

EEEC20034: Intro. to Digital Signal 
Processing 3

[ ] [ ]

[ ] [ ]

1

0
1

0

, 0,1, , 1

1 , 0,1, , 1

N
kn

N
n
N

kn
N

k

k n

n

X x W k N

x X W n N
N

k

−

=

−
−

=

= = −

= = −

∑

∑





,

)1(

)1(
)0(

,

)1(

)1(
)0(



















−

=



















−

=

NX

X
X

Nx

x
x

NN


Xx

( )12

2 4 2( 1)

( 1) 2( 1) ( 1)( 1)

1 1 1 1

1
IDFT matrix:  ,  for , 0,11

1

1 , 1

N
N N N

nk N
N N N N

N N N N
N N N

W W W
k n NW W W

W W

N

W

−

−

− − − −

 
 
 
 = = −
 
 
 
 

W









    





4

DFT as a Linear Transformation 
(cont’d)
 Note that for the matrix notation, I split 1/N in the 

synthesis equation to both the IDFT and DFT matrix

 Because the matrix (transformation) WN has a 
specific structure and because WN

k has particular 
values (for some k and n), we can reduce the number 
of arithmetic operations for computing this transform
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Example

 Let
 Compute the 4-point DFT
 DFT matrix

 Thus

 Note that  to compute each X[k] value, assuming x[n] is complex-valued, it 
requires us to perform N complex-valued multiplications and N-1 complex-
valued additions.  To compute all N values of the FFT, it requires N2

complex-valued multiplications and N(N-1) additions
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Fast Fourier Transform

 Highly efficient algorithms for computing DFT
 General principle: Divide and conquer
 Exploit specific properties of WN

k

 Complex conjugate symmetry: WN
kn = (WN

kn)*

 Symmetry: WN
k+N/2 = -WN

k

 Periodicity: WN
k+N = WN

k

 Particular values of k and n: e.g.radix-4 FFT (no 
multiplications: e.g. multiplication by 1 and -1)
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FFT

 Direct computation of DFT

 For 1 complex multiplication: x[n]WN
kn requires

 4 real-valued multiplications, 2 real-valued additions
 For each complex-valued addition

 2 real-valued additions
 So, for each k, since we need N complex multiplications and N-1 complex additions

 N complex-valued multiplications = 4N real-valued multiplications and 2N real-valued 
additions

 N-1 complex-valued additions = 2(N-1) real-valued additions
 Therefore, 4N real-valued multiplications and 2N+2(N-1) = 4N-2 real-valued additions

 Therefore, to compute all N values of the DFT, we need 4N2 real-valued 
multiplications and N(4N-2) real-valued additions.
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Radix-2: Decimation-in-Time 
Algorithms
 Idea: N-point DFT  N/2-point DFT  N/4-point DFT

N/4-point DFT
 N/2-point DFT  N/4-point DFT

N/4-point DFT
 Sequence: x[0] x[1] x[2] x[3] … x[n/2] … x[N-1]

 Even index: x[0]  x[2] … x[N-2]
 Odd index: x[1] x[3] … x[N-1]
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Radix-2: Decimation-in-Time 
Algorithms (cont’d)
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Radix-2: Decimation-in-Time Algorithms 
(cont’d)
 Note that G[k] and H[k] are periodic in k with a 

period of N/2.  Therefore for N = 8

 Similar relationship can be exploited to obtain 
X[5], X[6], and X[7]
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Comparison

 Direct computation of N-point DFT (N frequency samples)
 N2 complex-valued multiplications and ~N2 (it’s actually N(N-1), but we shall assume N is large) 

complex-valued additions
 Direct computation of N/2-point DFT

 We need to perform 2(N/2)-point DFTs, each one will require (N/2)2 complex-valued 
multiplications and approximately (N/2)2 complex-valued additions.  Therefore, we need to 
perform 2(N/2)2 complex-valued multiplications and 2(N/2)2 complex-valued additions

 Combining the 2(N/2)-point DFTs also requires
 an additional N complex-valued multiplications (because we need to multiply the WN

k terms)
 an additional N complex-valued additions (combining the G[k] and H[k] terms)

 Adding everything together, we have:
 N + 2(N/2)2 = N + N2/2 complex-valued multiplications
 N + 2(N/2)2 = N + N2/2 complex-valued additions

 For N>2, N+N2/2 < N2, therefore, this divide-and-conquer approach does decrease the amount of 
computations

 log2N-stage FFT
 Since N=2v, we can further break N/2-point DFT into two N/4-point DFT and so on

EEEC20034: Intro. to Digital Signal 
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(N/4)-point DFT: G[k]
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(N/4)-point DFT: H[k]
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Combining G[k] and H[k]

 Combining the two 
figures above and 
realizing that WN/2

k = 
WN

2k, we can obtain 
Figure 9.5
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2-point DFT

 Assuming N = 8, the 
(N/4)-point DFT is 
actually a 2-point DFT
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8-point DIT

 Then substituting the 2-
point DFT structure in 
Figure 9.6 into Figure 
9.5, we have the 
structure in Figure 9.7
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Number of Operations

 For a general N-point DFT, and assuming N is still a power of 2, we can decompose 
any N-point DFT into 2 (N/2)-point DFT, then the 2 (N/2)-point DFTs can be 
further decomposed into 4 (N/4)-point DFTs, then the 4 (N/4)-point DFTs can be 
decomposed into 8 (N/8)-point DFTs, and so on until we are left with a 2-point 
DFT

 There are a total of v = log2 N number of stages of computations
 Following the same logic as before for the N-point DFT, where we can decompose 

it into 2 (N/2)-point DFT, which requires N + 2(N/2)2 complex-valued 
multiplications and N + 2(N/2)2 complex-valued additions.  Decomposing the (N/2)-
point DFT into (N/4)-point DFT requires us to replace the (N/2)2 term into N/2 + 
2(N/4)2.  Therefore, we need to perform N+2(N/2 + 2(N/4)2) = N + N + 4(N/4)2

complex-valued multiplications and N+2(N/2 + 2(N/4)2) = N + N + 4(N/4)2

complex-valued additions
 This can be done at most v times, so the number of complex-valued multiplications 

and additions is equal to Nv = Nlog2 N

EEEC20034: Intro. to Digital Signal 
Processing 17
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Comparison: DFT vs. FFT

Number of 
points N

Direct computations: 
complex-valued 
multiplications

FFT: Complex-valued 
multiplications 
(Nlog2N) 

Speed 
improvement 
factor

4 16 8 2.0

8 64 24 2.67

16 256 64 4

64 4,096 384 10.67

256 65,536 2,048 32

1024 1,048,576 10,240 102.4

Further savings is possible if we consider the butterfly

EEEC20034: Intro. to Digital Signal 
Processing



FFT in Matrix Form: 4-point FFT

EEEC20034: Intro. to Digital Signal 
Processing 19

2

4

Consider the 4-point DFT matrix and consider decimation-in-time in which the inputs are 
permuted (bit

1 1 1 1 1 1 1 1
1 1 1

            
1 1 1 1 1 1
1 1

-reversed) becomes

1
1 1
11

H j jj j

jj j

   
   −   = =
   − − −
   − −   

− −
W

2

1
1

1

1j

   
   
   
   
   
   

Even-odd 
permutation

x[0]

x[2]

x[1]

x[3]

X[0]

X[1]

X[2]

X[3]

1
4W j= −

0
4 1W =

2
4 1W = −

3
4W j=

x[0]

x[1]

x[2]

x[3]

0
2 1W =

1
2 1W = −

2
2 1W =

3
2 1W = −



General 1024-point FFT Decomposition
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E.g. 8-point FFT Decomposition: DIT
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FFT Butterfly

 Butterfly
 Basic unit in FFT

 Two multiplications (see 
Figure 9.8 on right)

 Notice that WN
(r+N/2) =

WN
N/2WN

r = -1 WN
r, so the 

butterfly with two 
multiplications can be turned 
into a butterfly with a single 
multiplication (multiplication 
with 1 and -1 don’t count).  
See Figure 9.9 on right

EEEC20034: Intro. to Digital Signal 
Processing
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8-point DIT Using Simplified Butterfly 
Structure

Now we have an additional savings by a factor of 2 since at every 
butterfly, we have halved the number of multiplications!

EEEC20034: Intro. to Digital Signal 
Processing
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In-Place Computations

 Besides efficient computation of the DFT, the structure in Figure 9.10 also offers an efficient 
way to storage the original data and the results of the computations in the intermediate stages

 Each stage of the FFT process has N inputs and N outputs, so we need exactly N storage 
locations at any one point in the calculations

 It is possible to reuse the same storage locations at each stage to reduce memory overhead
 Any algorithm which uses the same memory to store successive iterations of a calculation is called an 

“in-place” algorithm
 Computation must be done in a specific order

 Let Xm[p] and Xm[q] denote the results from the mth stage of computations and Xm-1[p] and Xm-
1[q] denote the results from the (m-1)th stage of computations.  Then the relationship between 
the input and output of the butterfly can be written as (see Figure 9.11) 

Only two registers are needed for computing a butterfly unit because Xm[p] and Xm[q] are 
stored in the same storage registers as Xm-1[p] and Xm-1[q], respectively.  This is because once 
Xm[p] and Xm[q] are produced from Xm-1[p] and Xm-1[q], there is no need to store Xm-1[p] and 
Xm-1[q] anymore, so we can place the new results, Xm[p] and Xm[q], into the storage location of 
Xm-1[p] and Xm-1[q] 
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In-Place Computations (cont’d)
In order to retain the in-place computation property, the input data are accessed in the bit-reversed
order. This gives us an easy way to index the data

Note: The outputs are in the normal order (same as the “position”) 

Position Binary 
equivalent

Bit reversed Sequence 
index

6 110 011 3

2 010 010 2

Remark: Index 3 input data is placed at position 6

EEEC20034: Intro. to Digital Signal 
Processing
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In-Place Computations (cont’d)

 We may also place the 
inputs in the normal order; 
then the outputs are in the 
bit-reversed order to obtain 
the structure in Figure 9.14

EEEC20034: Intro. to Digital Signal 
Processing
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In-Place Computations (cont’d)

 If we try to maintain the 
normal order of both inputs 
and outputs, then in-place 
computation structure is 
destroyed.  The structure is 
shown in Figure 9.15.  There is 
no advantage in using this 
structure since there is no in-
place computation (cannot 
save storage space), and no 
easy way to index the data (the 
input data are not stored in bit-
reversed order)

EEEC20034: Intro. to Digital Signal 
Processing
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Radix-2 Decimation-in-Frequency 
Algorithms

Dividing the output sequence X[k] into smaller pieces
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Radix-2 Decimation-in-Frequency 
Algorithms
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Radix-2 Decimation-in-Frequency 
Algorithms (cont’d)
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Radix-2 Decimation-in-Frequency 
Algorithms (cont’d)
 We can further break  into 

even and odd groups (just like 
DIT).  Again, we can reduce 
the two-multiplication 
butterfly into one 
multiplication.  Hence, the 
computational complexity is 
about (N/2)log2 N. The in-
place computation property 
holds if the outputs are in bit-
reversed order (when inputs 
are in the normal order) 

EEEC20034: Intro. to Digital Signal 
Processing
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Radix-2 Decimation-in-Frequency 
Algorithms (cont’d)

EEEC20034: Intro. to Digital Signal 
Processing
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FFT for Composite N

 When N is not a power of 2, but a product of 2 or more 
integers, FFT algorithms still exist to compute the DFT

 If N is a prime number, we can simply pad zeros to make 
N into an composite integer

 Cooley-Tukey Algorithm: N = N1N2

 DIT and DIF are special cases of Composite N algorithm 
where N = 2(N/2) = (N/2)2

 For composite N FFT, we can divide x[n] and X[k] into a 
two-dimensional array

EEEC20034: Intro. to Digital Signal 
Processing
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Example

 For x[n] in this case, n1 is the column index and n2 is the
row index. There will be N2 elements in each column (i.e.
N2 number of rows) of the two-dimensional array which
stores x[n].

 For X[k], k1 is the column index and k2 is the row index.  
There will be N1 elements in each row (i.e. N1 number of 
columns) of the two-dimensional array which stores X[k] 

1 1
1 1 2

2 2

1

2 1 2

1
2 1 2

2 2
1 1 2

0 1
Time index:  or 

0 1

0 1
Freq. index:  or 

0 1
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n N

k N
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k N
N k
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Example (cont’d)
For example:  N1 = 2, N2 = N/N1 = N/2, then the input signal x[n] can be arranged 
into a 2-dimensional array as

n1

n2

0 1

0 x[0] x[N/2]
1 x[1] x[N/2+1]
.
.

.

.
.
.

N2-1 x[N/2-1] x[N-1]

EEEC20034: Intro. to Digital Signal 
Processing
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Decomposition
Goal: Decompose N-point DFT into two stages:  let n = N2n1 + n2 and k=k1 + N1k2

N1-point DFT⊗N2-point DFT 
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N N
N k n k n k N n N N k n

N N N N
n n

W W

k
N

X k x n W k N

X k N k

x N n n W

x N n n W W W W

x N n n W

−

=

− −
+ +

= =

− −

= =

= ≤ ≤ −

= +

= + ⋅

= + ⋅ ⋅ ⋅ ⋅

= + ⋅

∑

∑ ∑

∑ ∑
  



2 1
1 1 1 2 2 2

2
2 1

1

2

1 1

0 0 twiddle
factor

-point

-point

N N
n k n k n

N N
n n

N

N

W W
− −

= =

 
   ⋅ ⋅  
  
  

∑ ∑




EEEC20034: Intro. to Digital Signal 
Processing



38

Procedure

1
1 1

1
1

1 2

1
1 1

2 1 2 1 2
0 2 2

(1) Compute -point DFT of all  rows: (row transform)
0 1

               [ , ] [ ] ,   
0 1

(2) Each row DFTs are multiplied by twiddle factors: 

                

N
k n

N
n

N N
k N

G n k x N n n W
n N

−

=

≤ ≤ −
= + ⋅  ≤ ≤ −
∑

1 2

2
2 2

2
2

1 1
2 1 2 1

2 2

2
1

1 1 2 2 1
0

0 1
   [ , ] [ , ],   

0 1
(3) Compute -point DFT: (column transform)
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Example: N=15 = 3×5 = N1×N2

Row 1 x[0,0] = x[0] x[0,1] = x[5] x[0,2] = x[10]  G[0,k1]
Row 2 x[1,0] = x[1] x[1,1] = x[6] x[1,2] = x[11]  G[1,k1]
Row 3 x[2,0] = x[2] x[2,1] = x[7] x[2,2] = x[12]  G[2,k1]
Row 4 x[3,0] = x[3] x[3,1] = x[8] x[3,2] = x[13]  G[3,k1]
Row 5 x[4,0] = x[4] x[4,1] = x[9] x[4,2] = x[14]  G[4,k1]

First, perform a 3-point DFT  for each of the five rows (Notations: x[n2,n1], G[n2,k1]):

EEEC20034: Intro. to Digital Signal 
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Example: N=15 = 3×5 = N1×N2

Multiply by 1 2k n
NW

Column 1 Column 2 Column 3

[ ]0,0G

[ ]1,0G

[ ]2,0G

[ ]3,0G

[ ]4,0G

[ ]0,1G

[ ]1,1G

[ ]2,1G

[ ]3,1G

[ ]4,1G

[ ]0, 2G

[ ]1,2G

[ ]2,2G

[ ]3,2G

[ ]4,2G
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Example: N=15 = 3×5 = N1×N2

Compute the 5-point DFT for each of the three columns 

X[0,0] = X[0] X[0,1] = X[1] X[0,2] = X[2]
X[1,0] = X[3] X[1,1] = X[4] X[1,2] = X[5]
X[2,0] = X[6] X[2,1] = X[7] X[2,2] = X[8]
X[3,0] = X[9] X[3,1] = X[10] X[3,2] = X[11]
X[4,0] = X[12] X[4,1] = X[13] X[4,2] = X[14]

EEEC20034: Intro. to Digital Signal 
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Example: N=15 = 3×5 = N1×N2

Computation of N=15-point DFT by means of 3-point and 5-point DFTs 

EEEC20034: Intro. to Digital Signal 
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Example: N=15 = 3×5 = N1×N2 - Butterfly Structure
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Computational Complexity

 Extension: N = N1N2…Nv
 If N = N1N2

 1. row transform: N2⋅µ(N1)
 2. twiddle factors: N1N2 = N
 3. column transform: N1⋅µ(N2)

 In the example above, when N2 = 5 and N1 = 3.  We first have to perform 5 different 3-point DFT 
(row transform), so the number of multiplications will be 5 times µ(3), where µ(3) is the number of 
multiplications we need to perform for a 3-point DFT.  There are 15 twiddle factor multiplications 
(counting all trivial multiplications as well).   Finally, there are three 5-point DFT to perform in the 
last stage, therefore, 3 times µ(5) number of multiplications

 In general if N = N1N2…Nv, then by repeatly applying (*), we have                                    .  This is 
achieved by continuously breaking down the transform into successively smaller transforms.   N(v-1) 
accounts for the total number of twiddle factor multiplication.  However, it should be N(v-1)/2 
because half of the twiddle factors are actually equal to “1” (see example when N = N1N2 = 3*5)

 Note that the way we reduce the number of computations is to obtain efficient algorithms for 
implementing the smaller Ni-point transforms with few than Ni

2 multiplications









−+= ∑

=

ν
νµµ

1
)1()()(

i i

i

N
NNN

2 1 1 2

1 2

1 2

( ) ( ) ( )
         (*)( ) ( ) 1

N N N N N N

N NN
N N

µ µ µ

µ µ

= ⋅ + ⋅ +

 
= + + 

 

EEEC20034: Intro. to Digital Signal 
Processing



46

Special Case: N1 = N2 = … = Nv = 2
( ) ( )

( ) ( )

1 2 2

1 2 4

Radix-2:  2 and log
1

                ( )  multiplications because 2  requires no multiplications
2
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Radix-4 FFT

Each section Entire structure
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Implementation of Inverse FFT Using 
FFT

( )

[ ]

1

0
1

0

*1
*

0

1
*

0

*

1IDFT:  [ ] [ ]     (*)

DFT: [ ] [ ]

Hence, take the conjugate of (*)
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Then take the conjugate of 
1[ ]  DFT

        
1  FFT

Thus, we can use the FFT algorithm
to compute the inverse DFT

x n

x n X k
N

X k
N

 =  

 =  
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