Problem Set #3

EEEC20034 - Introduction to Digital Signal Processing

NYCU

Problem 1

Following are four *z*-transform. Determine which could be the *z*-transform of a causal sequence. Do not evaluate the inverse transform. You should be able to give the answer by inspection. Clearly state your reasons in each case.

(a)
$$\frac{(1-z^{-1})^2}{(1-\frac{1}{2}z^{-1})^2}$$

(b)
$$\frac{(z-1)^2}{(z-\frac{1}{2})}$$

(c)
$$\frac{(z-\frac{1}{4})^5}{(z-\frac{1}{2})^6}$$

(d)
$$\frac{(z-\frac{1}{4})^6}{(z-\frac{1}{2})^5}$$

Problem 2

Determine the inverse *z*-transform of each of the following. You should find the *z*-transform properties in Section 3.4 helpful.

(a)
$$X(z) = \frac{3z^{-3}}{(1-\frac{1}{4}z^{-1})^2} = 12z^{-2} \left[-z \frac{d}{dz} \left(\frac{1}{1-\frac{1}{4}z^{-1}} \right) \right]$$
, $x[n]$ left sided. Use

$$nx[n] \Leftrightarrow -z\frac{d}{dz}X(z)$$
$$x[n-n_0] \Leftrightarrow z^{-n_0}X(z)$$

(b)
$$X(z) = sin(z)$$
, ROC includes $|z| = 1$
(c) $X(z) = \frac{z^7 - 2}{1 - z^{-7}}$, $|z| > 1$

Problem 3

Let x[n] be sequence with the pole-zero plot shown in Fig. 1. Sketch the pole-zero plot for:

(a)
$$y[n] = (\frac{1}{2})^n x[n]$$

(b) $w[n] = cos(\frac{\pi n}{2})x[n]$

Figure 1

Problem 4 I

In Fig. 4, h[n] is the impulse response of the LTI system within the inner box. The input to the system h[n] is v[n], and the output is w[n]. The z-transform of h[n], H(z), exists in the following region of convergence:

$$0 < r_{min} < |z| < r_{max} < \infty.$$

(a) Can the LTI system within impulse response h[n] be BIBO stable? If so, determine inequality constraints on r_{min} and r_{max} such that it is stable. If not, briefly explain why.

Figure 2

Problem 4 II

- (b) Is the overall system (in the large box, with input x[n] and output y[n]) LTI? If so, find its impulse response g[n]. If not, briefly explain why?
- (c) Can the overall system be BIBO stable? If so, determine inequality constraints relating α , r_{min} , and r_{max} such that it is stable. If not, briefly explain why.

