Problem Set #4

EEEC20034 - Introduction to Digital Signal Processing

NYCU

Problem 1

The continuous-time signal

$$x_c(t) = \sin(20\pi t) + \cos(40\pi t)$$

is sampled with a sampling period T to obtain the discrete-time signal

$$x[n] = \sin\left(\frac{\pi n}{5}\right) + \cos\left(\frac{2\pi n}{5}\right).$$

Determine a choice for T consistent with this information.

Problem 2 I

A complex-valued continuous-time signal $x_c(t)$ has the Fourier transform shown in Fig. 1, where $(\Omega_2 - \Omega_1) = \Delta \Omega$. This signal is sampled to produce the sequence $s[n] = x_c(nT)$.

Figure 1: Prob. 2

Problem 2 II

- (a) Sketch the Fourier transform $X(e^{j\omega})$ of the sequence x[n] for $T = \pi/\Omega_2$.
- (b) What is the lowest sampling frequency that can be used without incurring any aliasing distortion, i.e., so that x_c(t) can be recovered from x[n]?
- (c) Draw the block diagram of a system that can be used to recover $x_c(t)$ from x[n] if the sampling rate is greater than or equal to the rate determined in Part (b). Assume that (complex) ideal filter are available.

Problem 3

In the system of Fig. 2,

$$X_c(j\Omega) = 0, \quad |\Omega| \ge \pi/T$$

 and

$$H(e^{j\omega}) = \left\{ egin{array}{ccc} e^{-j\omega} &, & |\omega| < \pi/L, \ 0 &, & \pi/L < |\omega| \le \pi. \end{array}
ight.$$

How is y[n] related to the input signal $x_c(t)$?

$$x_{c}(t) \xrightarrow{C/D} x[n] = x_{c}(nT) \xrightarrow{\uparrow L} H(e^{j\omega}) \xrightarrow{\downarrow L} y[n]$$

Figure 2

Problem 4

Let $x_c(t)$ be a real-valued continuous-time signal with highest frequency $2\pi(250)$ radians/second. Furthermore, let $y_c(t) = x_c(t - 1/1000)$.

- (a) If $x[n] = x_c(n/500)$, is it theoretically possible to recover $x_c(t)$ from x[n]? Justify your answer.
- (b) If $y[n] = y_c(n/500)$, is it theoretically possible to recover $y_c(t)$ from y[n]? Justify your answer.
- (c) Is it possible to obtain y[n] from x[n] using the system in Fig. 3? If so, determine $H_1(e^{j\omega})$.

$$x[n] \longrightarrow \begin{array}{c} V(e^{j\omega}) \\ 1 \\ 2 \\ \end{array} \xrightarrow{V(e^{j\omega})} H_1(e^{j\omega}) \\ H_1(e^{j\omega}) \\ \end{array} \xrightarrow{W(e^{j\omega})} y[n]$$

Figure 3: Only for part (c).