Problem Set #10

EEEC20034 - Introduction to Digital Signal Processing

NYCU

Problem 1

Suppose that we are given a continuous-time lowpass filter with frequency response $H_c(j\omega)$ such that

$$egin{aligned} 1-\delta_1 &\leq |\mathcal{H}_{c}(j\Omega)| \leq 1+\delta_1, & |\Omega| \leq \Omega_{p}, \ |\mathcal{H}_{c}(j\Omega)| \leq \delta_2, & |\Omega| \geq \Omega_{s}. \end{aligned}$$

A set of discrete-time lowpass filter can be obtained from $H_c(s)$ by using the bilinear transformation, i.e.,

$$H(z) = H_c(s)|_{s=\left(\frac{2}{T_d}\right)\frac{1-z^{-1}}{1+z^{-1}}},$$

with T_d variable.

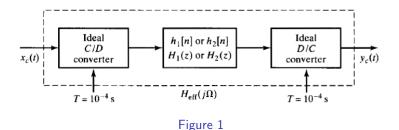
- (a) Assuming that Ω_p is fixed, find the value of T_d such that the corresponding passband cutoff frequency for the discrete-time system is $\omega_p = \pi/2$.
- (b) With Ω_p fixed, sketch ω_p as a function of $0 < T_d < \infty$.
- (c) With both Ω_p and Ω_s fixed, find the expression for the transition region $\Delta \omega = (\omega_s \omega_p)$ and sketch the transition region as a function of $0 < T_d < \infty$.

Problem 2 I

A continuous-time filter with impulse response $h_c(t)$ and frequency-response magnitude

$$|H_c(j\Omega)| = \left\{ egin{array}{cc} |\Omega|, & |\Omega| < 10\pi, \ 0, & |\Omega| > 10\pi, \ \end{array}
ight.$$

is to be used as the prototype for the design of a discrete-time filter. The resulting discrete-time system is to be used in the configuration of Fig. 3 to filter the continuous-time signal $x_c(t)$.



Problem 2 II

- (a) A discrete-time system with impulse response $h_1[n]$ and system function $H_1(z)$ is obtained from the prototype continuous-time system by impulse invariance with $T_d = 0.01$; i.e., $h_1[n] = 0.01h_c(0.01n)$. Plot the magnitude of the overall effective frequency response $H_{eff}(j\Omega) = Y_c(j\Omega)/X_c(j\Omega)$ when this discrete-time system is used in Fig. 3.
- (b) Alternatively, suppose that a discrete-time system with impulse response $h_2[n]$ and system function $H_2(z)$ is obtained from the prototype continuous-time system by the bilinear transformation with $T_d = 2$; i.e.,

$$H_2(z) = H_c(s)|_{s=(1-z^{-1})/(1+z^{-1})},$$

Plot the magnitude of the overall effective frequency response $H_{eff}(j\Omega)$ when this discrete-time system is used in Fig. 3.