Problem Set #13

EEEC20034 - Introduction to Digital Signal Processing

NYCU

Problem 1

Suppose $x_c(t)$ is a periodic continuous-time signal with period 1 ms and for which the continuous-time Fourier series (CTFS) is

$$x_c(t) = \sum_{k=-9}^{9} a_k e^{j(2\pi kt/10^{-3})}.$$

The Fourier series coefficients a_k are zero for |k| > 9. $x_c(t)$ is sampled with a sample spacing $T = \frac{1}{6} \times 10^{-3} s$ to form x[n]. That is,

$$x[n] = x_c \left(\frac{n10^{-3}}{6}\right)$$

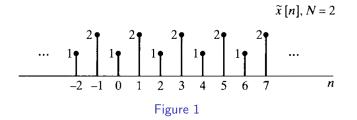
(a) Is x[n] periodic and, if so, with what period?

- (b) Is the sampling rate above the Nyquist rate? That is, is *T* sufficiently small to avoid aliasing?
- (c) Find the discrete Fourier series (DFS) coefficients of x[n] in terms of a_k . (Using the orthogonality relationship in Ex. 8.1)

Problem 2

Suppose $\tilde{x}[n]$ is a periodic sequence with period N. Then $\tilde{x}[n]$ is also periodic with period 3N. Let $\tilde{X}[k]$ denote the DFS coefficients of $\tilde{x}[n]$ considered as a periodic sequence with period N, and let $\tilde{X}_3[k]$ denote the DFS coefficients of $\tilde{x}[n]$ considered as a periodic sequence with period 3N.

- (a) Express $\widetilde{X}_3[k]$ in terms of $\widetilde{X}[k]$.
- (b) By explicitly calculating $\widetilde{X}[k]$ and $\widetilde{X}_3[k]$, verify your result in Part (a) when $\widetilde{x}[n]$ is as given in Fig. 1.



Problem 3 I

Consider a finite-length sequence x[n] of length N; i.e.,

$$x[n] = 0$$
 outside $0 \le n \le N - 1$.

 $X(e^{j\omega})$ denotes the Fourier transform of x[n]. $\widetilde{X}[k]$ denotes the sequence of 64 equally spaced samples of $X(e^{j\omega})$, i.e.,

$$\widetilde{X}[k] = X(e^{j\omega})\Big|_{\omega=2\pi k/64}$$

It is known that in the range $0 \le k \le 63$, $\widetilde{X}[32] = 1$ and all the other values of $\widetilde{X}[k]$ are zero.

If the sequence length is N = 64, determine one sequence x[n] consistent with the given information. Indicate whether the answer is unique. If it is, clearly explain why. If it is not, give a second distinct choice.