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F
ifth-generation (5G) networks 
will be the first generation 
to benefit from location 
information that is suffi-
ciently precise to be 

leveraged in wireless network 
design and optimization. We 
argue that location informa-
tion can aid in addressing 
several of the key challenges 
in 5G, complementary to 
existing and planned techno-
logical developments. These 
challenges include an increase 
in traffic and number of 
devices, robustness for mission-
critical services, and a reduction in 
total energy consumption and 
latency. This article gives a broad over-
view of the growing research area of loca-
tion-aware communications across different 
layers of the protocol stack. We highlight several 
promising trends, tradeoffs, and pitfalls. 

INTRODUCTION AND CHALLENGES
Fifth-generation will be characterized by a wide variety of use 
cases, as well as orders-of-magnitude increases in mobile data 
volume per area, number of connected devices, and typical user 

data rate, all compared to current 
mobile communication systems [1]. 

To cope with these demands, a 
number of challenges must be 

addressed before 5G can be 
successfully deployed. These 
include the demand for 
extremely high data rates 
and much lower latencies, 
potentially down to 1 ms 
end-to-end for certain appli-
cations [2]. Moreover, scal-
ability and reduction of 

signaling overhead must be 
accounted for, as well as mini-

mization of (total) energy con-
sumption to enable affordable 

cost for network operation. To ful-
fill these requirements in 5G, network 

densification is key, calling for a variety 
of coordination and cooperation techniques 

between various kinds of network elements in an 
ultradense heterogeneous network. Moreover, by imple-

menting sharing and coexistence approaches, along with new 
multi-GHz frequency bands, spectrum efficiency can be 
improved. An overview of a number of disruptive technologies 
for 5G is provided in [1]. 

It is our vision that context information in general and loca-
tion information in particular can complement both traditional 
and disruptive technologies in addressing several of the chal-
lenges in 5G networks. While location information was 
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available in previous generations of 
cellular mobile radio systems, e.g., 
cell-identifier (ID) positioning in 
second generation (2G), timing-
based positioning using communi-
cation-relevant synchronization 
signals in third generation (3G), 
and additionally dedicated position-
ing reference signals in fourth gen-
eration (4G), accuracy ranged from 
hundreds to tens of meters, rendering position information 
insufficiently precise for some communications operations. In 
5G, for the first time, a majority of devices can benefit from 
positioning technologies that achieve a location accuracy on the 
order of 1 m. 

In this article, we argue why and how such precise location 
awareness can be harnessed in 5G networks. We first present 
technologies providing seamless and ubiquitous location 
awareness for 5G devices, identify associated signal processing 
challenges, and describe at a high level how location 

information can be utilized across 
the protocol stack. We then zoom 
in on each layer of the protocol 
stack and provide an overview of 
recent and relevant research on 
location-aware communications. 
We conclude the article by identify-
ing a number of issues and 
research challenges that must be 
addressed before 5G technologies 

can successfully utilize location information and achieve the 
predicted performance gains. 

LOCATION AWARENESS IN 5G NETWORKS
A majority of 5G devices will be able to rely on ubiquitous loca-
tion awareness, supported through several technological devel-
opments: a multitude of global navigation satellite systems 
(GNSS) are being rolled out, complementing the current global 
positioning system (GPS). Combined with ground support sys-
tems and multiband operation, these systems aim to offer 
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[FIG1] Communication systems are tied to location information in many ways, including through distances, delays, velocities, angles, 
and predictable user behavior. The notations are as follows (starting from the top left downward): x  is the user location, xs  is the base 
station or sender location, and h  is the path loss exponent; xi  and x j  are the two-user location and dc  is a correlation distance; (.)z  is 
an angle of arrival between a user and a base station and h  is a multiple-input, multiple-output (MIMO) channel; c  is the speed of 
light and x  a propagation delay; fD  is a Doppler shift, ( )x to  is the user velocity, and m  is the carrier wavelength; R  is a communicate 
range and Rint  is an interference range; xd  is a destination; and  ( ( ))xp t  is a distribution of a user position at a future time .t
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location accuracies around 1 m in 
open sky [3]. In scenarios where 
GNSS is weak or unavailable (in 
urban canyons or indoors), other 
local radio-based technologies such 
as ultrawideband (UWB), Bluetooth, 
ZigBee, and radio frequency identi-
fication (RFID), will complement 
current Wi-Fi-based positioning. 
Together, they will also result in submeter accuracy. 

Accurate location information can be utilized by 5G networks 
across all layers of the communication protocol stack [4]. This is 
due to a number of reasons (see Figure 1), which will be detailed in  
later sections. First of all, signal-to-noise ratio (SNR) reduces with 
distance due to path loss, so that location knowledge and thus dis-
tance knowledge can serve as an indication of received power and 
interference level. Thus, if shadowing is neglected, the optimal 
multihop path between a source-destination pair in a dense net-
work is the one that is shortest in terms of distance. Second, 
while path loss is the dominant effect in wireless communica-
tions, shadowing creates significant localized power differences 
due to signal propagation through objects. Since shadowing 
often exhibits decorrelation distances larger than the position-
ing uncertainty, local channel information can be extrapolated 

to nearby terminals. Third, most 5G 
user terminals will largely be pre-
dictable in their mobility patterns, 
since they will be either associated 
with people or fixed or controllable 
entities. Finally, at the highest lay-
ers, location information is often 
crucial, not only for location-based 
services, but also for a variety of 

tasks in cyberphysical systems, such as robotics and intelligent 
transportation systems. 

Location awareness can be harnessed in a variety of ways to 
address several of the challenges in 5G networks. In particular, 
location-aware resource allocation techniques can reduce over-
heads and delays due to their ability to predict channel quality 
beyond traditional time scales. In Figure 2, we provide a top-level 
view of how location information may be utilized, inspired by 
research activities in 3G and 4G communication networks, while 
details will be provided in the subsequent sections. 

LOCATION AWARENESS ACROSS THE pROTOCOL STACK
Location awareness has received intense interest from the 
research community, in particular with respect to cognitive 
radio [5], where location databases are being used to exploit TV 
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[FIG2] At very short time scales, resource allocation (especially in the lower layers) must rely on instantaneous channel-state information 
(CSI). At longer time scales, position information can be harnessed to complement CSI.
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white spaces. However, recent studies have revealed that loca-
tion information can be harnessed not only by cognitive net-
works, but also cellular and ad hoc configurations [6]. 

In this section, we aim to group a number of representative 
works in this developing area, based on the layer of the protocol 
stack to which they pertain. Since many of the works below are 
inherently cross-layer, sometimes we had to make choices 
among two layers. We start by a description of how channel 
quality metrics can be predicted through a suitable database 
and inference engine. 

THE CHANNEL DATABASE
To predict the channel quality in locations where no previous 
channel quality measurement was available, a flexible predictive 
engine is needed. As different radio propagation environments 
have different statistical model parameters, this engine should be 
able to learn and adapt. Regression techniques from machine 
learning can be used for this purpose. Among these techniques, 
we focus on Gaussian processes (GPs) [7]. GPs have been used to 
predict location-dependent channel qualities in [8] and [9] in the 
following manner: users send a channel quality metric (CQM) to 
the database, along with the time and location at which it was 
acquired. After a training stage, the GP can provide an estimate of 
the CQM along with the uncertainty for any other receiver loca-
tion. Hence, the output of the GP can be considered as a prior dis-
tribution on the channel quality. The construction and utilization 
of such a GP database is shown in Figure 3. The CQM can take on 
a variety of forms (see also  Figure 1), including received power, 
root mean square delay spread, interference levels, or angular 
spread and rank profile for multiantenna systems [6], [4]. For the 
sake of simplicity, we will consider received power and disregard 
any temporal correlation of the CQM.

To model the received power CQM, we recall that a radio sig-
nal is affected mainly by three major components of the wireless 
propagation channel: distance dependent path-loss, shadowing 
due to obstacles in the propagation medium, and small-scale 
fading due to multipath effects. Small scale-fading decorrelates 
over very short distances for target operational frequencies. 
Hence, even with highly accurate position information, predic-
tions of small-scale fading in new locations are not possible. 
This implies that we can only provide coarse channel informa-
tion, which in many cases must be complemented with instan-
taneous small-scale information (see Figure 2). We let 

( , )P x xs iRX  be the power at a receiver node (located at ),x Ri
2!  

averaged over the small-scale fading in either time or frequency, 
from a source node (located at ),x Rs

2!  which can be 
expressed in a dB scale as

 ( , ) ( ) ( , ),logP L 10x x x x x xs i s i s i0 10RX h W= - - +  (1)

where h  is the path-loss exponent, ( , )x xs iW  is the location-
dependent shadow fading between the source and the receiver 
(expressed in dB), and L0  is a constant that captures antenna 
and other propagation gains. Although L0  is assumed to be 
common to all users, additional user-specific biases, such as 

different antenna types or transmit powers can be calculated by 
the user and sent back to the base station. A common choice for 
shadow fading is to assume a log-normal distribution, i.e., 
( , )~ ( , ),0x x Ns i

2vW W  where 2vW  is the shadowing variance. 
While the location dependence on path loss is clear from (1), 
the shadowing also has well-established spatial correlation mod-
els, such as [10] for cellular networks, wherein the spatial auto-
covariance function of shadowing is given by 

 ( , ) { ( , ) ( , )} ,expC d1 x x x x x x
x x

Ei j s i s j
c

i j2vW W= = -
-

} c m  (2)

where dc  denotes the correlation distance. 
In the case of a common transmitter (e.g., a base station with 

location ),x s  the GP framework operates as follows. The power 
( , )P x xs iRX  is considered to be a GP as a function of ,xi  with mean 

function ( )xin  and covariance function ( , ) .C x xi j  If we choose 
the mean function to be ( )xin =  (| | | |),logL 10 x xs i0 10h- -  
then the covariance function is exactly as defined in (2). To train 
the GP, let yi =  ( , )P nx xs i iRX +  be the noisy (scalar) observation 
of the received power at node ,i  where ni  is a zero mean additive 
white Gaussian noise random variable with variance .n

2v  We 
introduce [ , , , ] ,X x x xT T

N
T T

1 2 f=  [ , , , ] ,y y yy N
T

1 2 f=  and 
{ , } .X yD =  The joint distribution of the N  training observations 

now exhibits a Gaussian distribution [7]

 | ; ~ ( ( ), ),y X X KNi n  (3)

where ( ) [ ( ), ( ), , ( )]X x x xN T
1 2 fn n n n=  is the mean vector and 

K  is the covariance matrix with entries [ ] ( , )CK x xij i j= +   
,n ij

2v d  where 1ijd =  for i j=  and zero otherwise. The Gauss-
ian  distribution (3) depends on a number of parameters 

[ , , , , ],d Ln c
2

0
2i v h v= W  which can be learned using the training 
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[FIG3] Users upload their location (pos) and time-tagged (t) 
channel quality metrics [e.g., the received signal strength, 
(RSS)], possibly along with their user ID, to a channel database. 
The information can be extrapolated to future users, requesting 
a channel quality metric in other locations for the same base 
station, using techniques such as Gps.
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database D  by minimizing negative log-likelihood 
( ( | ; ))log p y X i-  with respect to .i  This completes the training 

process. The predictive distribution of the noise-free signal power 
( , )P x xsRX )  at a new node location ,x)  given the training database 

,D  is a Gaussian distribution with mean ( , )P x xsRX )  and variance 
( , ),x xsRXR )  given by [7] 

 )( , ) ( ) ( ( ))P x x x k K y Xs
T 1

RX *n n= + -)
-  (4)

 )( , ) ( , ) ,Cx x x x k K ks
T 1

RXR = -) ) ) )
-  (5)

in which k)  is the N 1#  vector of cross-covariances ( , )C x xi)  
between .x)  and the training inputs .xi

Figure 4 demonstrates an example of radio channel prediction 
using a GP. A base station is placed in the center and a two-
dimensional  radio propagation field is simulated through a com-
puter model according to (3) with sampling points on a square 
grid of 200 m #  200 m and a resolution of 4 m. Based on mea-
surements at marked locations, the mean and standard deviation 
of the prediction are obtained for any location. Observe the 
increased uncertainty in Figure 4(c) in regions where few mea-
surements are available. 

In the case where links rely on different transmitters, the 
model above can still be applied [8], though more advanced 
models exist. For instance, in the case of ad hoc networks,  [9] 
proposes a model where shadow fading is due to an underlying 
spatial loss field. 

GPs can thus provide a statistical description of the CQM in any 
location and any time. This description can be used in resource 
allocation at different layers, e.g., to reduce delays and/or over-
heads. In the following, we present specific examples that are useful 
mainly in one layer. We will start with the physical layer. 

THE PHYSICAL LAYER
In the lowest layer of the protocol stack, location information 
can be harnessed to reduce interference and signaling overhead, 
to avoid penalties due to feedback delays, or to synchronize 
coordinated communication schemes. 

The best known application is spatial spectrum sensing for 
cognitive radio [11], where a GP allows the estimation of power 
emitted from primary users at any location through collaboration 
among secondary users. The resulting power density maps enable 
the secondary users to choose the frequency bands that are not 
crowded and to adapt their transmit power to minimize the inter-
ference to the primary users. These techniques can be adapted in 
5G to perform interference coordination. For instance, significant 
potential for the exploitation of location information in multian-
tenna techniques arises in spatial cognitive radio paradigms 
(underlay, overlay, interweave) [6]. Such location-aided tech-
niques could be compatible with some very recent developments 
in massive MIMO, where the exploitation of slow fading subspaces 
in the multiantenna propagation has been advocated. 

The GP database also provides useful information in any 
application that relies on a priori channel information, such as 
slow adaptive modulation and coding or channel estimation. 
This is investigated in [12], where location-aware adaptive 
mobile communication uses both channel and spatial move-
ment coherence in combination with location prediction and a 
fingerprint database. When at time t  a user reports future pre-
dicted locations ( ), ( ), , ( )t t t T1x x xf+ +  to the database, the 
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[FIG4] Radio channel prediction in decibel scale, with 
hyperparameters [ . , , , ,d m L0 01 70 10 3dBn c

2
0i v h == = = =  

],9 dBv} = N 400=  measurements (+ signs). The channel 
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channel field, (b) the mean [obtained from (4)] of the predicted 
channel field; and (c) the standard deviation [obtained from the 
square root of (5)] of the predicted channel field.



 IEEE SIGNAL PROCESSING MAGAZINE [107] NOvEMbER 2014

corresponding received powers can be determined ( ),P tRX  
( ), , ( ) .P t P t T1RX RXf+ + For each time, the predicted capacity 

is then 

 ( ) ( ) ,logC t W N W
P t12

0

RX
= +c m  (6)

where W  is the signaling bandwidth and N0  is the noise power 
spectral density. The communication rate is then adapted to not 
exceed the predicted capacity. It is demonstrated that location-
aware adaptive systems achieve large capacity gains compared to 
state-of-the-art adaptive modulation schemes for medium to 
large feedback delays. Such delays are especially important in 5G 
application with fast-moving devices, such as transportation sys-
tems, which are also the topic of [13], where the short channel 
coherence time precludes adaptation based on the fast fading 
channel. Instead, link adaptation based on path loss is consid-
ered, which in turn depends on the locations of the vehicles. 
Expressions for large-scale coherence time and velocity are 
derived, and it is found that feeding back location information 
can substantially reduce feedback overhead without compromis-
ing data rate. Location-based feedback latency reduction is also 
discussed in [6], e.g., for fast relay selection. 

Significant opportunities for location-aware communications 
concern resource allocation aspects, especially for multiuser (MU) 
and MIMO systems. In such systems, recent information theory 
progress shows that an optimized handling may lead to significant 
system capacity increases, though only in the presence of very pre-
cise channel-state information at the transmitter (CSIT). In the 
single-cell case (or at the cell center), one can consider location-
aware downlink MU-MIMO. Multiple antennas at the user side do 
not allow a base station with M  antennas serving M  users to send 
more streams in a cell, but a user can use its N  antennas to sup-
press the effect of N 1-  multipath components. Hence, if the 
overall propagation scenario involves a line-of-sight (LoS) path and 
up to N 1-  multipath components, the user can use receive 
beamforming (BF) to transform its channel into a pure LoS chan-
nel, allowing the base station to perform zero-forcing (ZF) trans-
mission with only location information [14]. In the multicell case, 
which in information-theoretic terms corresponds to the interfer-
ence channel (IC) and in practice to the macrocellular environ-
ment or to HetNets (coexistence of macro and femto/small cells), 
there are opportunities for location-aided MIMO interference chan-
nels [14]. In particular the feasibility of joint transmitter/receiver 
(Tx/Rx) ZF BF is of interest in the case of reduced rank MIMO 
channels (with LoS being the extreme case of rank one). Whereas 
in the full rank MIMO case, the joint Tx/Rx design is complicated 
by overall coupling between all Tx and all Rx, i.e., a requirement of 
overall system CSI at all base stations, some simplifications may 
occur in the reduced rank case. In particular, for the LoS case (the 
easiest location-aided scenario, higher rank cases requiring data-
bases), the Tx/Rx design gets decoupled, leading to only local (e.g., 
location-based) CSI requirements [14]. 

Locations can also be utilized in a different manner, by con-
verting them not to a CQM, but to other physical quantities, such 
as Doppler shifts (proportional to the user’s relative velocity), 

arrival angles (used in [4] for location-based spatial division mul-
tiple access), or timing delays (which are related to the distance 
between transmitter and receiver). This latter idea is taken up in 
[6] and applied for coordinated multipoint (CoMP) transmission, 
illustrated in Figure 5, showing a mobile node receiving synchro-
nization signals from three base stations, deployed with a fre-
quency reuse of 1. CoMP transforms interference experienced by 
the mobile users to signal power, especially at the cell edge, by 
coordinating the signals of all involved base stations. 

CoMP relies on accurately synchronized signals, a process that 
can be aided through a priori location information, which deter-
mines the potential window to exploit the synchronization signals 
from different base stations. Figure 6 shows the potential gains in 
terms of required transmit power at the base station to achieve a 
certain synchronization performance for different values of the 
location uncertainty of the mobile node. The communication sys-
tem benefits if the synchronization requirements are at least in 
the range of the location accuracy (1-ns timing uncertainty cor-
responds to 30-cm position uncertainty). For example, compar-
ing a system with multiple base stations for a desired 
synchronization accuracy of 20 ns, 40 dBm is required when no 
position information is available, while less than 32 dBm is 
required when positioning accuracy is around 3 m. 

As the aforementioned works indicate, location information 
provides valuable side-information about the physical layer. It can 
be harnessed to reduce delays and feedback overhead, and even to 
improve performance. Determining when to utilize location-
based CQM and when to rely on instantaneous CSI is an impor-
tant topic in the optimization of 5G communications. Next, we 
move up to the medium access control (MAC) layer, where even 
richer opportunities for the use of location information arise than 
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at the physical layer, especially without the need to estimate 
channel gains based on position and/or distance information. 

THE MAC LAYER
With more devices communicating with each other, scalability, 
efficiency, and latency are important challenges in designing effi-
cient protocols for MAC. In this section, we provide an overview 
of some of the existing works on the use of location information 
at the MAC layer to address these design challenges. In particular, 
multicasting, scheduling, and selection protocols are considered. 
Again, we can make a distinction between approaches that tie 
locations to channel and approaches where locations are 
exploited in a different way. 

In the first group, we find works such as [6] and [15]–[17]. 
The basic premise is that a link between transmitter with posi-
tion x s  and receiver with position xi  can be scheduled with the 
same resource as an interfering transmitter with position ,x j  
provided that 

 ( , )
( , ) ,N W P

P
x x

x x
j i

s i

0 RX

RX 2 c
+

 (7)

where c  is a signal-to-interference-plus-noise ratio (SINR) 
threshold. SINR expressions such as (7) can easily be combined 
with a CQM database. In [6], a location-aided round-robin sched-
uling algorithm for fractional frequency reuse is proposed, where 
allowing temporary sharing of resources between cell-center and 
cell-edge users is shown to achieve higher total throughput with 
less and less frequent feedback than the conventional method. In 
the same paper, location-based long-term power setting in het-
erogeneous cochannel deployments of macro and femto base sta-
tions is investigated. In [15], location-based multicasting is 

considered, assuming a disk model, and is shown to both reduce 
the number of contention phases and increase the reliability of 
packet delivery, especially in dense networks. Time division with 
spatial reuse is considered in [17], which investigates location-
aware joint scheduling and power control for IEEE 802.15.3, 
leading to lower latencies and higher throughput compared to a 
traditional round-robin type scheduling mechanism. Location 
information is also beneficial in reducing the overhead associated 
with node selection mechanisms (e.g., users, relays), by allowing 
base stations to make decisions based solely on the users’ posi-
tions [6]. Finally, location information is a crucial ingredient in 
predicting interference levels in small/macrocell coexistence, in 
multicell scenarios, and in all cognitive radio primary/secondary 
systems. For example, [6] and [14] demonstrate the use of loca-
tion information to allow to significantly improve intercell inter-
ference coordination techniques. Location-based modeling of 
attenuation and slow fading components will bring about prog-
ress in the design of multicellular systems, complementing the 
recent significant progress that has focused almost exclusively on 
the fast fading component (e.g., interference alignment). For 
underlay cognitive radio systems, location-based prediction of 
interference caused to primary users may be a real enabling 
approach. These works indicate that significant gains in terms of 
throughput and latency can be reaped from location-aware MAC 
in 5G networks, provided appropriate channel models are used. 

In the second group, we find approaches that utilize location 
information in a different way [16], [18], [19]. All turn out to 
relate to vehicular networks. In [16], a family of highly efficient 
location-based MAC protocols is proposed, whereby vehicles 
broadcast information to other vehicles only when they pass 
through predetermined transmission areas. When the traffic 
flow rate increases, the proposed location-based protocols have 
a smaller message delivery time compared with conventional 
random access schemes. A similar idea is proposed in [18], 
where a decentralized location-based channel access protocol 
for intervehicle communication is studied. Channels are allo-
cated based on vehicles’ instantaneous geographic location, and 
unique channels are associated to geographic cells. Using a pre-
stored cell-to-channel mapping, vehicles know when to trans-
mit on which channel, alleviating the need for a centralized 
coordinator for channel allocation. This leads to efficient band-
width use and avoids hidden node problems, since neighboring 
cells do not use the same channel. In addition, communication 
delay is bounded and fairness among the vehicles is maintained 
as each vehicle gets a channel regularly to transmit. 
Finally,  [19] introduces the concept of geocasting, whereby 
multicast regions are formed based on the geographical location 
of the nodes and packets are sent to all the nodes in the group. 
Specialized location-based multicasting schemes are proposed 
to decrease the delivery overhead of packets when compared to 
multicast flooding mechanisms. 

We observe that in the MAC layer there is a more varied use of 
location information than in the physical layer, especially without 
direct need of the channel database. In all cases, improvements in 
terms of latency, overhead, or throughput were reported. The 
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emphasis on dense mobile networks, 
and the limited need for centralized 
infrastructure make these tech-
niques promising for 5G networks. 
We now move up to the network and 
transport layers, where geographic 
routing plays an important role. 

NETWORK AND TRANSPORT LAYERS
At the network and transport layers, location information has 
been shown to improve scalability and to reduce overhead and 
latency. A full-fledged location-based network architecture is 
proposed in [5] for cognitive wireless networks, dealing with 
dynamic spectrum management, network planning and expan-
sion, and in handover. In particular, a location-aided handover 
mechanism significantly reduces the number of handovers 
compared with signal strength-based methods [20], which are 
subject to delay and hysteresis effects. 

Location-aided techniques, especially using mobility infor-
mation to forecast future channel capacities for the mobile, 
become particularly powerful when vertical temporary hando-
vers are considered to systems with larger channel capacity to 
offload data. Such large capacity systems may exhibit short win-
dows of opportunity due to their limited coverage. 

Most other works at the network layer have focused on the 
routing problem. A well-known technique in this area is geo-
graphic routing (georouting), which takes advantage of geo-
graphic information of nodes (actual geographic coordinates 
or virtual relative coordinates) to move data packets to gradu-
ally approach and eventually reach their intended destination. 
In its most basic form, given a destination ,d  a node i  with 
neighbors Ni  will choose to forward data to a neighbor closest 
to the destination: 

 .arg minj x x*

j
j d

Ni
= -

!
 (8)

Recently, georouting has gained considerable attention, as it 
promises a scalable, efficient, and low-latency solution for infor-
mation delivery in wireless ad hoc networks. For a comprehen-
sive survey of the existing literature on georouting, investigating 
how location information can benefit routing, we refer to [21]. 

Georouting is mainly limited due to two factors: it is sensi-
tive to localization errors and it does not exploit CQM, favoring 
latency (measured in this context in terms of progress toward 
the destination) over throughput. The first issue is investigated 
in [22], where it is shown that georouting quickly degrades as 
location information becomes imprecise. More robust routing 
mechanisms are proposed, combining progress toward the des-
tination with an error measure in the locations. The second is-
sue is treated in [23] and [24]. In [23], where positions are 
mapped to a CQM, a centralized routing algorithm aims to max-
imize end-to-end flow. The mismatch between the estimated 
and true channels is mitigated using a distributed algorithm, 
whereby nodes locally adjust their rate, but not the routes. 
While [23] no longer directly optimizes progress toward the 

 destination, [24] considers both 
throughput and latency in a fully 
distributed manner. In [24], the net-
work consists of power-constrained 
nodes that transmit over wireless 
links with adaptive transmission 
rates. Packets randomly enter the 
system at each node and wait in 

output queues to be transmitted through the network to their 
destinations. The data flows from source to destination accord-
ing to the enhanced dynamic routing and power control 
(EDRPC) algorithm, which is proven to stabilize the network 
with a bounded average delay. In EDRPC, each of the N  nodes in 
the network maintains N  queues, Q( )

i
d  denoting the queue at 

node i  with stored information destined to node d  (note that 
Q 0( )
d
d
=  for all destinations). Each link, say ( , ),i j  locally decides 

the destination to serve, such as  

 ,arg maxd Q Q* ( ) ( )
ij i

d
j
d

{ , , }d N1
= -

f!

u u^ h  (9)

where ,Q Q V( ) ( ) ( )
i
d

i
d

i
d

= +u  in which V 0( )
i
d
$  is a design parameter. 

When ,V 0( )
i
d
=  ,i6  the destination with the largest backlog will 

be served over link ( , ) .i j  Setting the values ,V f x x( )
i
d

i d= -^ h  
where (·)f  is a monotonically increasing function will incentivize 
data to flow toward the geographic position of the destination 
(i.e., given equal backlogs, the destination will be chosen that 
max imizes  j ,f fx x x xi d d- --^ ^h h  f avor ing  smal l 

.x xdj - h  Following the choice of ,d*
ij  EDRPC performs a (cen-

tralized) power allocation for each link, leading to an allowable 
rate per link. Finally, each node i  will serve destination d*

ij  over 
link ,i j^ h with an amount of data at the allowable rate and thus 
reduces its queue length .Q( )

i
d*i  

The focus in [22]–[24] is on relatively static networks, 
where there are no drastic topology changes. In certain appli-
cations, such as vehicular networks, this assumption is no 
longer valid, as is treated in [25] and [26]. In [25], the use of 
mobility prediction to anticipate topology changes and per-
form rerouting prior to route breaks is considered. The 
mobility prediction mechanism is applied to some of the 
most popular representatives of the wireless ad hoc routing 
family, mainly an on-demand unicast routing protocol, a dis-
tance vector routing protocol, and a multicast routing proto-
col. Routes that are the most stable (i.e., routes that do not 
become invalid due to node movements) and stay connected 
longest are chosen by utilizing the mobility prediction. The 
mobility characteristics of the mobile nodes are taken into 
account in [26], and a velocity-aided routing algorithm is 
proposed, which determines its packet forwarding scheme 
based on the relative velocity between the intended forward-
ing node and the destination node. The routing performance 
can further be improved by the proposed predictive mobility 
and location-aware routing algorithm, which incorporates 
the predictive moving behaviors of nodes in protocol design. 
The region for packet forwarding is determined by predicting 
the future trajectory of the destination node. 
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We clearly see that at the network and transport layer, har-
nessing location information appropriately can aid in reducing 
overhead and latency, while offering scalable solutions, even for 
highly mobile networks. In such networks, location information 
also plays an important role in the higher layers, as we will 
detail next. 

HIGHER LAYERS
At the higher layers, location infor-
mation will naturally be critical to 
provide navigation and location-
based services. While we do not aim 
to provide a complete overview of 
such services, we briefly detail sev-
eral applications of importance in 
the context of 5G networks. 

First, we have classical context awareness, which finds nat-
ural applications in location-aware information delivery [27] 
(e.g., location-aware advertising) and multimedia streaming 
[28]. For the latter application, [28] tackles the problem of 
guaranteeing continuous streaming of multimedia services 
while minimizing the overhead involved, by capturing corre-
lated mobility patterns, predicting future network planning 
events. A second class of applications is in the context of intel-
ligent transportation systems. Several car manufacturers and 
research centers are investigating the development of interve-
hicle communication protocols. In this context,  [29] focuses 
on the problem of providing location-aware services (e.g., traf-
fic-related, time-sensitive information) to moving vehicles by 
taking advantage of short-range, intervehicle wireless com-
munication and vehicular ad hoc networks. Location informa-
tion is also critical for autonomous vehicles to coordinate 
and plan the vehicle’s actions with respect to the environ-
ment and current traffic conditions (see Figure 7). Highly 
related are the tactile Internet [2] and other mobile cyber-
physical systems, such as groups of unmanned aerial vehicles 
or robots [8], where localization and communication are 
closely intertwined. 

Finally, location information also has implications in the 
context of security and privacy. For example, [30] studies the 
management of encryption keys in large-scale clustered sen-
sor networks. In particular, a novel distributed key manage-
ment scheme is proposed that reduces the potential of 

collusion among compromised 
sensor nodes by factoring the geo-
graphic location of nodes in key 
assignment. In [6], location infor-
mation is utilized to detect worm-
hole attacks, which disrupt the 
network topology, as perceived by 
the benign nodes. 

While we have focused on exist-
ing applications, we can expect 
novel, unforeseen location-based 

services in 5G networks, following us at all times, anticipating 
our needs, and providing us with information when and where 
we need it. With this comes a number of risks related to security 
and privacy, which should be addressed explicitly. 

RESEARCH CHALLENGES AND CONCLUSIONS
Fifth-generation mobile and wireless communication systems will 
require a mix of new system concepts to boost spectral efficiency, 
energy efficiency, and the network design. There are many open 
issues to be addressed before these systems will be able to enter the 
market. In the following, we focus our attention on challenges 
related to the use of location information in 5G networks. 

■■ Achieving location awareness: Throughout this article, we 
have assumed accurate location information is available. 
However, to realize the predicted position accuracies, signifi-
cant signal processing challenges must be addressed so that 
seamless and ubiquitous localization can be made possible. 
The challenges include 1) handover, fusion, and integration 
of different positioning technologies; 2) coping with errors 
due to harsh propagation environments and interference; and 
3) decentralization and reduction of complexity. In addition, 
5G technologies themselves may have tight interactions with 
positioning. For example, millimeter wave systems may 
require accurate user tracking through BF; novel waveforms 
such as those used in filter bank multicarrier have relaxed 
synchronization demands, and may therefore reduce time-
based positioning accuracy. 

■■ Ad hoc networking: In ad hoc and certain machine-to-
machine (M2M) networks, availability of a CQM database is 
questionable. In addition, accessing the database would require 
a preexisting communication infrastructure. Hence, distributed 
databases (or database-free methods) may be required in such 
networks, to capitalize on location awareness. The construction, 
maintenance, and exploitation of these databases will rely on 
distributed signal processing and deserves further study. Loca-
tion knowledge can also be leveraged to find low-latency control 
and data paths in ad hoc networks, enabling wireless control 
systems. The appropriate storage, utilization, and combination 
of location-based with pilot-based CQM is an open issue. 

[FIG7] The use of location information in intelligent 
transportation systems. After self-positioning, the vehicles 
become aware of each other through wireless communication 
and are able to avoid an accident.  
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■■ Signaling overhead: While 
the ratio of signaling overhead 
with respect to data payload is 
generally increasing, this is 
particularly apparent in M2M 
and Internet of Things signal-
ing, as the typically used proto-
cols are inefficient for such 
traffic. Even in combination with location awareness, 
overhead will be a major  bottleneck, and dedicated repre-
sentation and compression mechanisms as well as local-
ized protocols need to be designed. The choice of CQM also 
plays an important role as more precise information can 
yield better gains, but at costs in terms of complexity, 
robustness, and overhead. 

■■ Spatial channel modeling: The wide variety of use cases 
requires a flexible and robust inference engine. GPs, as pre-
sented earlier, are a promising candidate, but they are faced 
with challenges in terms of storage and computational com-
plexity. Sparsifying techniques to build and maintain the 
database, decentralized processing, as well as structured 
approaches in the prediction are among the main signal pro-
cessing challenges. In addition, various sources of uncer-
tainty must be accounted for explicitly in the GP framework 
(e.g., in terms of the position), as well as inherent nonstation-
arities in the channel statistics. Yet another challenge is to 
keep the database of the different CQMs updated and syn-
chronized. The updates may be delivered by different 5G 
radio devices and could drive the synergy between the differ-
ent radio types, such as M2M or mobile radio devices. Com-
pared to today’s drive tests, the autonomous refinement of 
network resources would allow to increase the coherence 
time of the database content. 

■■ PHY/MAC/NET layers: Location information can be 
exploited in a number of ways, both through databases and 
channel modeling, as well as more directly at the PHY/MAC/
NET layers. An important challenge is to identify the right 
tradeoff between relying on location-based information and on 
pilot-based CQM information. A second challenge involves the 
amount of centralized versus decentralized processing. An 
open question on the network level is how to best utilize loca-
tion information for identifying when network-assisted device-
to-device communication is beneficial and aiding neighbor 
discovery. Finally, the issue of energy-efficiency deserves fur-
ther study. For example, location information could be used to 
decide when to power down certain small cell base stations. 

■■ Higher layers: In 5G networks using location information, 
there are great possibilities for resource allocation (power, 
bandwidth, rate) based on prediction of user behaviors/trajec-
tories, predicted load levels at various network nodes, chan-
nel statistics, and interference levels (previously stored in 
databases, for example). Some initial research has been done, 
but there is a large space for designing completely new algo-
rithms and solutions. In addition, sharing location informa-
tion raises important privacy and security issues. Secure and 

private computing in a location-
aware context are promising, but 
they pose technical challenges in 
which signal processing can aid in 
masking and hiding information 
and in developing attack-resistant 
algorithms and protocols.

In summary, location awareness 
bears great promise to the 5G revolution, provided we can 
understand the right tradeoffs for each of the possible use cases. 
In this article, we have given an overview of how location aware-
ness can be leveraged across the different layers of the (tradi-
tional) protocol stack, and we highlighted a number of 
important technical challenges. 
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