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Abstract—Small cells constitute a promising solution for man-
aging the mobile data growth that has overwhelmed network
operators. Local caching of popular content items at the small
cell base stations (SBSs) has been proposed to decrease the costly
transmissions from the macrocell base stations without requiring
high capacity backhaul links for connecting the SBSs with the
core network. However, the caching policy design is a challenging
problem especially if one considers realistic parameters such as the
bandwidth capacity constraints of the SBSs that can be reached in
congested urban areas. We consider such a scenario and formulate
the joint routing and caching problem aiming to maximize the
fraction of content requests served locally by the deployed SBSs.
This is an NP-hard problem and, hence, we cannot obtain an
optimal solution. Thus, we present a novel reduction to a variant
of the facility location problem, which allows us to exploit the
rich literature of it, to establish algorithms with approximation
guarantees for our problem. Although the reduction does not
ensure tight enough bounds in general, extensive numerical results
reveal a near-optimal performance that is even up to 38% better
compared to conventional caching schemes using realistic system
settings.

Index Terms—Caching and routing algorithms, network opti-
mization, facility location problems, small cell networks.

I. INTRODUCTION

TO cope with the mobile data traffic explosion [2], [3]
mobile network operators (MNOs) deploy small cell base

stations (SBSs) which operate in conjunction with the macro-
cell base stations (MBSs) [4]. This architecture benefits both the
MNO by replacing the long-range costly transmissions of the
MBSs, and the users by offering them high-capacity, energy-
prudent communication links. However, the operation of these
small cells presumes the existence of high-speed backhaul links
connecting the deployed base stations with the core network.
This is currently one of the major operation cost components
for MNOs [5] who seek methods for reducing it [6].
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A. Motivation

Decentralized caching architectures have been recently pro-
posed [7]–[10] with the goal to minimize peak traffic—and
subsequently, the cost—of these backhaul links. The main
idea is to cache in advance (during off-peak demand) popular
content items at the SBSs so as to reduce, especially during
peak traffic hours, the requests that are routed over the backhaul
links to the core network. Field trials [5] have revealed that this
architecture can reduce the peak traffic on base stations by over
45% compared to schemes with no caching. Therefore, it is
not surprising that related solutions have already attracted the
interest of industry [11]–[13].

Given the vast set of the content items, the challenge in this
context is to find the optimal caching policy. That is, decide
which items should be cached at each base station, so as to
maximize the portion of user requests that are satisfied locally
by the SBSs, without using backhaul links or employing the
MBSs. Unfortunately though, this has been proved to be in
general an NP-hard problem [7].

Deriving the optimal caching policy becomes even more
challenging if one considers massive content delivery scenarios,
e.g., in populated areas or during peak traffic hours. In these
cases, mobile data delivery will be constrained by the transmis-
sion capacity of the SBSs. Obviously, to deliver a content item
to a user, it does not suffice to have it cached at a base station
within the user’s transmission range, but additionally the base
station should have enough capacity to deliver it. Prior works
assume that the transmission capacity is rarely the bottleneck
for the caching base stations. Clearly, this is not a realistic
assumption for dense urban areas where user content demand
is often massive.

B. Methodology and Contributions

In this work, we consider the scenario of massive content
delivery through SBSs with hard bandwidth constraints that
bottleneck the data transmission to mobile users. We explain
through simple examples that, in this case, the MNO’s caching
policy has to take into account the bandwidth capacity con-
straints. Additionally, user requests should not be trivially
routed to any base station that has cached the content items
of interest. Instead, the operator must explicitly devise the
routing policy, i.e., determine which requests to route to each
SBS. This means that the routing and caching policies must
be jointly designed. To achieve this, we provide an analytical
framework for this joint routing and caching for un-splittable
requests (JRC-UR) problem, the solution of which maximizes
the content requests that are satisfied by the SBSs.
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This problem is very important and equally challenging to
solve. Namely, the already NP-hard caching problem is further
compounded due to the additional bandwidth constraints of the
SBSs. Besides, our model additionally takes into account (i)
the heterogeneity of the base stations which may have different
cache sizes and transmission capacities, and (ii) the variation
of request patterns of the users which may ask for different
content items with different intensity.

We group users into user classes based on their geographic
location, and allow a user class to generate more than one
requests for each file. We consider the case that user requests
are unsplittable, which implies that each one of the requests is
entirely satisfied by one base station, i.e., a user that requests
a file will not receive different parts of it from different base
stations, but a complete replica from a single base station.1

This is of major importance, since associating a user request
with multiple base stations incurs the extra effort to synchronize
the communication. Besides, user association cannot change in
a very small time scale as base station reselection requires a
time interval of several seconds [14]. Hence, the unsplittable
case is the most realistic and challenging scenario in caching
problems, and a constraint that is often relaxed to simplify
analysis [15], [16].

To address these issues we propose a novel mapping of the
JRC-UR problem to a variant of the facility location problem
known as the Unsplittable Hard-Capacitated Metric Facility
Location Problem (UHCMFL). The UHCMFL problem has
been studied extensively, and there exist a variety of bi-
criteria approximation algorithms for its solution [17]–[22].
A bi-criteria (α, β)-approximation algorithm ensures an
α-approximation solution under the assumption that the facility
capacities can be violated up to β times. We prove that the
JRC-UR can be reduced in polynomial time to UHCMFL.
Moreover, we provide a methodology for transforming the
above bi-criteria algorithms to standard approximation algo-
rithms that do not require violation of capacities. This is very
important as, in many settings, the base stations (which corre-
spond to facilities) have hard and not easy-to-expand capacity
constraints [23].2

The presented mapping leads to an optimization framework
for small cell caching problems where we can employ, after
proper modifications, the algorithms that have been derived for
the class of UHCMFL problems. In general, the theoretical
approximation bounds for the JRC-UR problem are highly
sensitive to variation in the number of content items and the
network load, and consequently are not always particularly
tight. Even so, to the best of the authors knowledge, this is the
first work that provides a solution with provable approximation
guarantees for the joint content placement and request routing
problem in small cell networks. More importantly, based on
extensive numerical study, we show that the casted UHCMFL
algorithms, that are applicable due to the proposed transfor-
mation, perform very well and close to the optimal solution.

1However, please notice that requests for the same file generated by users in
the same class can be satisfied by different base stations.

2Small-cells could obtain extra bandwidth in various ways, for instance by
spectrum reuse or from Cognitive Mobile Virtual Network Operator.

Additionally, we show numerically that the obtained solution
outperforms conventional heuristic caching algorithms (with
static, non-optimized routing).

The main technical contributions of this work can be summa-
rized as follows:

• Modeling. We formulate the JRC-UR problem which con-
siders important features such as the resource heterogene-
ity (storage and bandwidth capacities) of the small cell
base stations, and the different content request patterns of
the users. Its solution yields the joint routing and caching
policy that maximizes the requests served by the SBSs.

• Connection to Facility Location Problem. We reduce the
JRC-UR problem to the Unsplittable Hard-Capacitated
Metric Facility Location Problem (UHCMFL) [21]. This
reduction reveals the potential for exploiting the rich lit-
erature in facility location problems in order to optimize
caching in small cell networks.

• Facility-location Inspired Algorithms. We present an ap-
proximation framework based on the aforementioned re-
duction. Particularly, we show that every approximation
algorithm for UHCMFL can be transformed to a respective
algorithm with an approximation ratio for the JRC-UR
problem. These algorithms perform in practice very well,
and far better than the worst-case conditions indicate.

• Performance Evaluation. We evaluate numerically one of
the derived approximation algorithms in representative
scenarios, and find that its performance (in terms of re-
quests routed to MBS) is less than 10% worse than the
optimal solution. This result is further improved as the
cache sizes, the steepness of the file popularity distribu-
tion, and/or the total request load increases. Moreover, we
show that the proposed scheme outperforms typical greedy
algorithms up to 38%.

The rest of the paper is organized as follows. Section II de-
scribes the system model and the assumptions, and introduces
formally the problem. In Section III we reduce the problem to
the UHCMFL problem. Section IV presents an approximation
framework based on the above reduction, whereas Section V
provides the numerical results. In Section VI we review our
contribution compared to related works, and we conclude in
Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model and
explain the considered network architecture. In the sequel, we
provide a simple, yet representative, example that motivates the
joint design of routing and caching policies, and we formally
introduce the respective optimization problem.

A. System Model

We consider a single macrocell3 in which the mobile network
operator (MNO) serves the content requests submitted by a set
K = {1, 2, . . . ,K} of K = |K| classes of mobile users (MUs).
Each class represents the users lying in a certain geographic

3The study can be directly extended for more macrocells.
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Fig. 1. Mobile users are randomly distributed in the coverage regions of the
SBSs. Each SBS n has certain storage and bandwidth capacity of Sn and Bn

units respectively.

area.4 Hence, it is possible to have more than one requests for
one file originating from the same point. Also, there exists a set
N = {1, 2, . . . , N} of N = |N | small cell base stations (SBSs)
which operate in conjunction with the macrocell base station
(MBS), yielding a heterogeneous cellular network. This two-
layer architecture is depicted in Fig. 1.

We consider the case that the SBSs operate in disjoint
subchannels than the MBS [24], [25]. Also, we assume that
neighboring SBSs are assigned orthogonal frequency bands
and/or employ enhanced inter-cell interference coordination
techniques (eICIC) proposed in LTE Rel. 10 [26]. We assume
that time is slotted and we study the system for one time period
T . Each SBS n ∈ N has a certain transmission capacity, i.e.,
it can deliver Bn ≥ 0 data bytes within period T . Additionally,
each SBS n ∈ N is endowed with a storage capacity of Sn ≥ 0
bytes.

Let the set I indicate a static collection of I = |I| content
items (or, files). For notational convenience, we assume that
all files have the same size s. This assumption can be easily
removed as, in real systems, files can be divided into blocks of
the same length or by leveraging advanced coding techniques
[7], [15]. We denote with λki ∈ Z+ the expected number of
requests for file i ∈ I generated by user class k ∈ K within
T . Observe that a user class consists of many users and thus
can generate more than one requests for the same file. User
requests may change over consecutive time periods but are
considered fixed (and known) within each period. This is a
realistic assumption for proactive caching as the popularity
distribution of the files changes slowly [7], [27], [28]. Similar
approaches have been followed for modeling user demand in
cellular networks [29]. The coverage areas of the SBSs are
overlapping. Let Nk ⊆ N denote the set of SBSs that are
in communication range with user class k. Then, a request
generated by k can be satisfied by any of the SBSs in Nk that
owns a copy of the requested item. The requests that cannot be
satisfied locally, i.e., by any SBS, are routed to the MBS. Our
goal is to minimize this latter quantity which depends both on
the caching and the routing policy of the operator.

4Hereafter, we may use the term user k ∈ K to refer to user class k ∈ K.

Fig. 2. An example with 2 SBSs (n1 and n2) and 3 users (k1, k2, k3). The
circles denote the transmission range of each SBS.

B. Motivating Example

Consider the system depicted in Fig. 2 with two SBSs (n1

and n2) and three users (k1, k2 and k3). The circles represent
the coverage areas of the SBSs while all the users are also
covered by the MBS (not shown). There are also two equal-
sized files denoted i1 and i2. Each SBS can cache at most one
file due to its limited storage capacity. Also, because of the
bandwidth limitations, n1 can serve at most 5 requests and n2

can serve at most 10 requests. User class k1 requests file i1 1
time, k2 requests i1 2 times and k3 requests file i2 10 times. The
optimal routing and caching strategy is the one that maximizes
the requests satisfied by n1 and n2. In this example, this policy
dictates to cache i1 to n1, and i2 to n2. Then, n1 serves the
request for i1 generated by k1, and n2 serves all the requests for
i2 generated by k3. Hence, only 2 requests need to be served by
the MBS.

However, if we omit the transmission capacity constraints,
then the optimal caching policy changes: it places i2 to n1, and
i1 to n2. Then, n1 handles all the requests of k3, and n2 handles
all the requests of k2, letting only the one request generated by
k1 to be routed to the MBS. Nevertheless, in practice, n1 will
serve only half of incoming requests (due to limited capacity)
and redirect the rest to the MBS. Hence, the MBS will have to
serve 6 > 2 requests.

This example demonstrated that ignoring the SBSs’ band-
width capacities when designing the caching policy leads the
system to inefficient operating points, for the case of massive
content requests where the capacity limits of the SBSs are
reached. In the sequel, we formalize the respective problem for
the general case.

C. Problem Formulation

Let us introduce the binary decision variable xni ∈ {0, 1}
which indicates whether file i ∈ I is placed at the cache of
SBS n ∈ N or not. We also define the respective caching policy
matrix:

x = (xni : n ∈ N , i ∈ I). (1)

Additionally, let the integer decision variable ykni ∈ Z+ indi-
cate the number of requests for file i generated by user class k
that are routed to SBS n. Also, ykMi ∈ Z+ denotes the number
of requests for file i generated by user k ∈ K that are routed to
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the MBS which is denoted with M . The routing policy of the
operator is described by the following matrix:

y =
(
ykni : n ∈ N ∪ {M}, i ∈ I, k ∈ K

)
. (2)

Observe that each one of the λki requests for file i gener-
ated by user class k must be satisfied by exactly one SBS,
∀i ∈ I, k ∈ K. This means that each variable ykni is allowed
to take value in the integer set {0, 1, . . . , λki} (“un-splittable
requests”). The above integrality constraint makes the problem
even harder compared to the simplified case that any fraction
of the total user demand for a file is allowed to be routed to
multiple SBSs, i.e., the variable ykni take values in the real set
[0, λki] (“splittable requests”) [15], [16].

As we explained in the previous example, the routing policy
should take into account the bandwidth capacity constraint Bn

of each SBS n ∈ N . Clearly, if an SBS is already congested,
it cannot serve additional user requests. Moreover, routing
decisions are coupled with the respective caching decisions: a
request is routed to an SBS only if the latter has the requested
content item cached. At the same time, the caching policy must
respect the storage capacity Sn of each base station n ∈ N .

Summarizing, the problem of devising the joint routing and
caching policy for un-splittable requests (JRC-UR problem)
which minimizes the requests routed to the MBS, can be
formulated as follows:

min
x,y

∑
k∈K

∑
i∈I

ykMi (3)

s.t.
∑
i∈I

xnis ≤ Sn, ∀n ∈ N , (4)

∑
k∈K

∑
i∈I

yknis ≤ Bn, ∀n ∈ N , (5)

ykni ≤ xniλki, ∀i ∈ I, k ∈ K, n ∈ N , (6)

ykni = 0, ∀i ∈ I, k ∈ K, n ∈ N \ Nk, (7)∑
n∈N∪{M}

ykni = λki, ∀i ∈ I, k ∈ K, (8)

xni ∈ {0, 1}, ∀n ∈ N , i ∈ I, (9)

ykni ∈ Z+, ∀n ∈ N ∪ {M}, i ∈ I, k ∈ K, (10)

where inequalities (6) indicate that SBSs can not serve requests
for files that are not in their caches. Constraints (7) denote that
SBSs can not serve requests generated by users located out of
their coverage areas, and (8) dictate that the system must serve
all the requests (inelastic demand).5 Finally, (9), (10) reveal the
discrete nature of the optimization variables.

Clearly, the above problem is very hard to solve optimally.
Namely, the following lemma holds.

Lemma 1: The JRC-UR problem is NP-hard.
Proof: The JRC-UR problem is a generalization of the

Helper Decision Problem (HDP), described in [7], by incor-

5Notice that we have not included a capacity constraint for the MBS,
assuming that it can accommodate all the unsatisfied requests even if this entails
a very high OpEx cost.

TABLE I
KEY NOTATIONS

porating the hard bandwidth constraints of the SBSs. Hence,
problem HDP, which is NP-hard [7], can be directly reduced in
polynomial time to our problem. Consequently, JRC-UR is also
NP-hard. �

Finally, we summarize the key notation used throughout the
paper in Table I.

III. REDUCTION TO A VARIANT OF THE

FACILITY LOCATION PROBLEM

In this section our goal is to devise a polynomial time
reduction of the JRC-UR problem to a well known facility
location problem. This will help us in the sequel to derive
approximation algorithms for our problem, by using the ones
that have been designed for the facility location problem. Note
that although, in general, reduction preserves only optimality
(and not approximation bounds) [30], for our case it also
holds that we can compute how much in the worst case the
approximation ratio deteriorates, as we show in the next section.
Hence, the reduction serves as the main building block for our
optimization framework. Subsequently, we describe a polyno-
mial time reduction of the JRC-UR problem to the following
variant of the facility location problem [21]:

Definition 1—Unsplittable Hard-Capacitated Metric Facility
Location Problem (UHCMFL): We are given a set V of |V|
locations, where there is a subset A ⊆ V of facilities, and a
subset B ⊆ V of clients. Let di ≥ 0 denote the demand of client
i ∈ B. Besides, let fj ≥ 0 and Cj ≥ 0 denote the opening cost
and the capacity of facility j ∈ A, respectively. Each client
needs to assign its entire demand to a single open facility
(unsplittable). Capacity Cj limits the total sum of demands
served by facility j (hard capacitated). We denote by cij ≥ 0
the unit cost incurred when serving one unit of demand of client
i by facility j. We assume that these costs form a metric, i.e.,
they are non-negative, symmetric (cij = cji), and satisfy the
triangle inequality: cij + cjk ≥ cik, ∀i, j, k ∈ V .

The problem is to determine which subset of facilities A∗ ⊆
A should open, and which clients each one of them should
serve (denoted by a function π : B → A∗), so as to minimize
the aggregate facility opening and servicing cost Q:

Q =
∑
j∈A∗

fj +
∑
i∈B

dici π(i). (11)

At the same time satisfying the capacity constraints∑
{i∈B:π(i)=j} di ≤ Cj , ∀j ∈ A.
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Fig. 3. An example of the reduction to the UHCMFL problem. We consider a setting with 1 MBS, 2 SBSs, and 3 users as shown on the left. The system
parameters are |I| = 4, s = 1, S1 = S2 = 2, and B1 = B2 = 2.

The connection between the UHCMFL and the JRC-UR
problem is non-trivial. In fact, previous works in the literature
that established reductions of caching problems to facility
location problems focused on the simplified case that only a
single piece of content is to be placed in the caches [21]. Our
model substantially differs from these works, as it considers the
practical case that multiple files exist, while the cache size and
the bandwidth capacity of the SBSs are limited. To the best
of our knowledge this is the first work that shows that such a
connection exists. Theorem 1 describes this result.

Theorem 1: The JRC-UR problem is polynomial-time re-
ducible to the UHCMFL problem.

We describe in detail this reduction and prove its validity in
the following two subsections.

A. The Reduction

In this subsection, we analytically describe the reduction
mentioned in Theorem 1. Particularly, we reduce any instance
of the JRC-UR problem to an instance of the UHCMFL prob-
lem. Let FJRC−UR be that instance of the UHCMFL problem.
Then, FJRC−UR is constructed as follows:

The set of facilities A consists of: (i) one facility named
aM for the MBS and (ii) a facility named ani for every SBS
n ∈ N and every file i ∈ I. The set of clients B comprises
the following subsets: (i) B1 that contains λki clients, ∀k ∈
K and ∀i ∈ I, denoted as bki1, bki2 . . . , bkiλki

, (ii) B2, with
|I| − 
Sn/s� clients, denoted b′n1, b′n2 etc, ∀n ∈ N , and (iii)
subset B3 which contains (
Sn/s� − 1)
Bn/s� clients, which
are denoted b′′n1, b

′′
n2 etc, ∀n ∈ N . The symbol 
.� denotes

rounding to the next lower integer. The capacity of the facility
aM is set to +∞ and to Bn/s for each ani, ∀n ∈ N , i ∈ I.
The demand of each client b′ni ∈ B2 is equal to Bn/s. Each of
the remaining clients bkij ∈ B1 and b′′ni ∈ B3 has demand equal
to 1.

Let c be an arbitrarily small positive constant. Then, the unit
serving cost for each pair of a facility and a client is specified as
follows: (1) Each pair of the form (aM , bkij), ∀k, i, j, has cost
equal to 1 + 0.5 + c. (2) Each pair of the form (ani, bkij), such
that n ∈ Nk and j ∈ {1, . . . , λki}, has cost equal to 0.5 + c.
(3) Each pair of the form (ani, b

′
nj), ∀n, i, j, has cost equal to

0.5 + c. (4) Each pair of the form (ani, b
′′
nj), ∀n, i, j, has cost

equal to 0.5 + c. The cost value of each of the remaining pairs

is equal to the cost of the shortest path that unite this pair. Thus,
the costs form a metric. Finally, the facility opening cost is set
to zero for every facility.

Roughly speaking, the facility aM represents the MBS and
the facilities ani, ∀i, the SBS n. Hence, the facility capacity
choices indicate that the MBS can serve all the user requests,
while each SBS n can serve up to a limited number of requests.
Each one of the clients of the type bkij ∈ B1, ∀k, i, j (whose
demand is equal to one) represents one user request, while
b′ni ∈ B2, and b′′ni ∈ B3, ∀n, i denote virtual user requests that
are necessary to preserve the cache capacity and bandwidth
constraints of the SBSs, as it will become clear in the following
subsection.

Each solution for the FJRC−UR problem can be mapped to a
solution for the JRC-UR problem as follows:

• Rule 1: For each facility ani not serving any client of the
form b′nj ∈ B2, ∀j, place file i to the cache of SBS n.

• Rule 2: For each facility of the form ani serving a client
of the form bkij ∈ B1, ∀n, i, k, j route the jth request of
user k for file i to SBS n.

• Rule 3: The remaining requests are routed to the MBS.

Fig. 3 depicts the reduction for the example of Fig. 2. Here,
we set the system values as follows: |I| = 4, s = 1, S1 = S2 =
2 and B1 = B2 = 2. Each of the two first users requests every
file once. User 3 performs two requests for the first file. Squares
represent the facilities and circles the clients. Solid lines unite
clients to facilities with cost 0.5 + c. Dashed lines mean that
the corresponding cost is 1 + 0.5 + c. The cost value of each of
the remaining pairs is equal to the cost of the shortest path that
unites this pair. For example, the cost between the client b′11 and
facility a21 is 1.5 + 3c. The demand of each client is 1, except
for the clients named as b′ni ∈ B2, ∀n, i, whose demand is 2.
The capacity of each facility is 2, except for the aM facility,
whose capacity is +∞.

To help the reader understand the rationality behind the
reduction, we also present a partition of the UHCMFL compo-
nents, specified by the dashed rectangles and the arrowed labels
with cyan color. Recall that the role of the clients in B2 and B3

is to preserve the cache space and bandwidth limitations of the
SBSs, which are mapped to the facilities ani, ∀n, i. Hence, a
logical partition of the UHCMFL components should include
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the above into the same group. To this end, each SBS in our
example corresponds to the 8 components in the top of the
UHCMFL instance (namely 4 facilities and 4 clients), each user
k to

∑
i∈I λki of the bottom clients, and the MBS to the facility

named aM .

B. The Reduction Proof

We now prove that the preceding reduction holds, by proving
the next two lemmas. Let D denote the total demand of the
clients in FJRC−UR. Then, we have:

Lemma 2: For every feasible solution of the JRC-UR prob-
lem with value C, there is a feasible solution to FJRC−UR with
total cost C +D(c+ 0.5).

Proof: We construct the solution to FJRC−UR as follows:

(1) We open all the facilities at zero cost.
(2) For each file i not cached at SBS n, we assign the

(entire) demand of one client of type b′nj ∈ B2, j ∈
{1, . . . , |I| − 
Sn/s�} to the facility ani.

(3) For each request generated by a user k for a file i served
by an SBS n, we assign the demand of one client of type
bkij ∈ B1, j ∈ {1, . . . , λki} to the facility ani.

(4) The demand of a client of type b′′nj ∈ B3, j ∈
{1, . . . , (
Sn/s� − 1)(
Bn/s�)}, is randomly assigned
to one of the facilities of the form ani, ∀i ∈ I, without
violating their capacity constraints.

(5) For each client bkij ∈ B1 that has not been covered yet,
we assign its demand to the facility aM . Thus, every unit
of demand of the clients was assigned to a facility. An
assignment to the facility aM incurs a per unit cost equal
to 1 + 0.5 + c, while all the other assignments incur a
per unit cost equal to 0.5 + c. By construction of the
graph, the total demand assigned to aM is equal to the
number of requests that are routed to the MBS (C). Thus,
the solution has cost equal to C +D(0.5 + c). �

Lemma 3: For every minimum cost solution of the
FJRC−UR instance with total cost C, there is a feasible solution
to the JRC-UR problem with value C −D(0.5 + c).

Proof: We construct the solution to JRC-UR problem as
follows:

(1) For each facility ani not serving any client of the form
b′nj ∈ B2, ∀j, place file i to the cache of SBS n (Rule 1).
Observe that each client b′nj ∈ B2, ∀j, must be assigned
to a facility of the form ani, ∀i ∈ I, at per unit cost
0.5 + c. This is because each of the other choices incurs
at least 1 + 0.5 + 3c per unit cost. Thus, the extra cost
paid is at least 1 + 2c. On the other hand, each client
bkij ∈ B1, ∀k, i, j, can always be assigned to the facility
aM at per unit cost 1 + 0.5 + c. This means that the
potential gain for assigning it to a facility of the form
ani, ∀i ∈ I, at cost 0.5 + c, is equal to 1, which is
strictly lower than the extra cost paid above. We also
observe that, the demand of each of these clients is
equal to the capacity of each of the facilities of the form
ani, ∀i ∈ I. There are |I| − 
Sn/s� such clients. Thus,
these clients fully occupy the capacity of |I| − 
Sn/s�
of these facilities. Consequently, exactly 
Sn/s� of the

above facilities will remain uncovered corresponding to
the files placed at the cache of SBS n.

(2) For each facility of the form ani serving a client of the
form bkij ∈B1, ∀n, i, k, j route the jth request of user k
for file i to SBS n (Rule 2). Observe that each of the
clients of type b′′nj ∈B3, ∀j, must be assigned to one
of the 
Sn/s� uncovered facilities of the form ani, ∀i,
similarly to the above case. The capacity of each of
these facilities is equal to Bn/s. There exist (
Sn/s�−
1)
Bn/s� such clients, each of them with demand equal
to 1. Thus, the remaining capacity suffices for serving
at most Bn/s units of demand of the clients bkij ∈
B1, ∀k, i, j. By construction, a client bkij ∈B1 can be
served by a facility ani with cost equal to 0.5+c iff
n∈Nk. The cost for serving bkij ∈B1 by ani, ∀n �∈Nk is
more than the serving cost by aM . Thus, at most Bn/s
requests generated by users in the coverage area of an
SBS n will be routed to n, ∀n∈N . The remaining C−
D(0.5+c) requests will be routed to the MBS (Rule 3).�

To avoid confusion, we need to emphasize that the key
point of the reduction is to force all the clients b′nj ∈ B2

and b′′nj ∈ B3, ∀j to assign their (entire) demand on one of
the facilities of the form ani, ∀i, for each SBS n ∈ N . To
ensure this, we picked the servicing cost values appropriately.
A different choice would be to set the cost between each one
of the clients in the set B2 ∪ B3 and one of the above facilities
equal to zero, and to +∞ for all the other choices. Then, we
could set the cost for assigning clients in B1 from 0.5 + c to
zero, from 1 + 0.5 + c to 1 and to +∞ for the rest choices.
Note that, although this new instance of the facility location
problem would be equivalent to the JRC-UR problem, the costs
would not form a metric any more. The non-metric version of
the UHCMFL problem is much harder, and there are not any
approximation algorithms for it in the literature. This is the
reason that we added the quantity 0.5 + c to the cost value of
each one of the above links and restricted the cost of each one
of the rest links to be equal to the aggregate cost in the shortest
path that unites the endpoint vertices.

Note that the reduction does not hold for c ≤ 0, since the
extra cost paid for assigning a client b′nj ∈ B2 or b′′nj ∈ B3 to
a facility an′i, n′ �= n can be lower than the potential gains, as
explained in Lemma 3 (1).

IV. APPROXIMATION ALGORITHMS

In this section, we present an approximation framework
for the JRC-UR problem based on the reduction described in
Section III. We first discuss existing approximation algorithms
for the UHCMFL problem. Accordingly, we describe methods
to extend them so as to tackle the problem under consideration.
Additionally, we derive improved approximation ratios for the
special case of equal transmission capacity SBSs. This is an
important case because, more often than not, SBSs will be of
the same type and hence they will have equal transmission
capacities. Finally, elaborating on the derived approximation
ratios, we show that these ratios are highly sensitive to variation
in the number of content items and the network load, and
consequently are not always particularly tight.
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TABLE II
BI-CRITERIA BOUNDS FOR THE UHCMFL PROBLEM

A. Approximation Ratios for the UHCMFL Problem

It is NP-hard even to approximate the solution of UHCMFL
problem. Hence, previous works [17]–[22] focused on ob-
taining bi-criteria approximation algorithms. Formally, an
(α, β)-bi-criteria approximation algorithm finds an infeasible
solution with a cost at most α ≥ 1 times the optimal cost
and aggregate demand assigned to each facility at most β ≥ 1
times its capacity. Similarly, we can define an (α, β)-bi-criteria
approximation algorithm for the JRC-UR problem, such that
its solution violates the bandwidth capacities of the SBSs by
at most a factor of β. Clearly, when β equals to one, a feasible
solution is attained. We call the corresponding algorithm simply
as an α-approximation algorithm.

Table II summarizes the existing results in the literature in
chronological order. Notice that different results are obtained
for the case that facilities have equal capacities (uniform case).
Parameter ε > 0 is arbitrarily small and |V| is the size of
the facility location instance. A Quasi-polynomial time algo-
rithm (QP.) runs slower than polynomial time (P.), yet faster
than exponential time [21]. For example, the complexity of
Algorithm 7 is |V|O(log |V|).

Shmoys et al. [17] provided the first approximation algo-
rithm for the UHCMFL problem (Algorithm 1). They used
the filtering and rounding technique of Lin and Vitter to solve
the splittable version of the problem, and then round the ob-
tained solution to provide a (9, 4)-approximation algorithm
for the unsplittable case. The first step requires solving the
linear programming relaxation of the UHCMFL problem, and
then rounding it to obtain a g − close integer solution, i.e., a
solution that assigns clients to facilities with cost at most g.
The second step expresses the problem as one of assigning
jobs to machines. Then, it rounds the current solution to a
new one by solving an appropriately constructed instance of
the maximum weight matching in a bipartite graph problem.
The running time of this procedure is cubic to the size of
the facility location instance. Authors in [17] also proposed
a randomized variant of the above technique that provides an
improved approximation guarantee (Algorithm 2). As it is well
discussed in [22], applying the same rounding technique of [17]
to the results for the splittable case provided in [18]–[20] yields
even tighter approximation ratios for the unsplittable variant of
the facility location problem (Algorithms 3–5).

The work in [21] provided an (1 + ε, 1 + ε)-approximation
algorithm for the UHCMFL problem for the special case that
the costs form a tree metric [31], ∀ε > 0. Their algorithm is
based on a dynamic programming approach. Clearly, the costs

in the instance of the facility location problem in Section III
do not form a tree metric. Hence, we can not use this result as
the previous ones. Interestingly, using Fakcharoenphol et al.’s
machinery [31], we can translate the above solution to obtain
a (log |V|, 1 + ε)-approximation algorithm for general metrics.
This translation requires polynomial time for the uniform ca-
pacities case and quasi-polynomial time for the general case.
Finally, the work in [22] provided the first approximation
algorithms that violate the capacities by a factor less than two
and achieve a constant approximation ratio. The result is based
on a reduction to a restricted version of the initial problem
in a way that any (O(1), 1 + ε)-approximation algorithm for
the restricted problem implies an (O(1), 1 + ε)-approximation
algorithm for the initial problem, for ε ∈ {1/2, 1/3}.

B. Approximation Ratios for the JRC-UR Problem

Although JRC-UR and UHCMFL problems are equivalent
in terms of their optimal solution, the extension of approxima-
tion algorithms from one to the other is not straightforward.
Theorem 2 describes the way that the bi-criteria bound changes
when translating the solution to handle the JRC-UR case. Let
us define:

c′ =
D(0.5 + c)∑

k∈K
∑

i∈I(λki)−
∑

n∈N (Bn/s)
(12)

Then, we have the following theorem:
Theorem 2: For any (α, β)-bi-criteria approximation algo-

rithm for the UHCMFL problem there is an (α+ (α− 1)c′,
(β−1)|I|+1)-bi-criteria approximation algorithm for the JRC-
UR problem, requiring the same computational complexity.

Proof: The overall traffic routed to an SBS n ∈ N
by the real users is β|I|(Bn/s)− (|I| − 
Sn/s�)(Bn/s)−
(
Sn/s� − 1)
Bn/s� in the worst case. This is because, each
SBS corresponds to |I| facilities, each one of which has capac-
ity equal to the capacity of the SBS. The virtual clients of the
type b′nj ∈ B2 and b′′nj ∈ B3, ∀j, must be served by the facili-
ties ani ∀i, in any case, as explained in Lemma 3. That is the
reason that we subtracted the traffic sent to them in the above
expression. However, in reality, only Bn/s amount of data can
be transmitted by each SBS. The fraction of the two values,
after some computations, can be written as (β − 1)|I|+ 1.

Besides, let opt and approx be the optimal and an ap-
proximation solution of the JRC-UR problem respectively. By
Lemma 2, it holds that:

approx+D(0.5 + c) ≤ α (opt+D(0.5 + c)) (13)

or equivalently:

approx ≤
(
α+

D(0.5 + c)(α− 1)

opt

)
opt (14)

Finally, it is:

opt ≥
∑
k∈K

∑
i∈I

(λki)−
∑
n∈N

(Bn/s) (15)

which completes the proof. �
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Fig. 4. Our algorithms operate in three stages. In Stage I, the MNO transforms
the JRC-UR into the UHCMFL instance. In Stage II, it solves that instance
by employing one of the algorithms in Table II. In Stage III, it maps the
obtained solution to a solution for the JRC-UR instance based on the rules in
Section III-A.

Theorem 2 combined with Algorithms 4 and 7 in Table II,
provides two bi-criteria approximation algorithms for the JRC-
UR problem. Corollary 1 describes this result:

Corollary 1: There exist a polynomial time (α1, β1)-bi-
criteria approximation algorithm and a quasi-polynomial time
(α2, β2)-bi-criteria approximation algorithm for the JRC-UR
problem, for:

(α1, β1) = (11 + 10c′, |I|+ 1) (16)

(α2, β2) = (log v + (log v − 1)c′, ε|I|+ 1) , ε > 0 (17)

where v is the size of the instance of the UHCMFL problem
corresponding to the JRC-UR problem.

We can use the above bi-criteria solutions to perform caching
and routing in our problem as it is described in Fig. 4. Note
also that, as the bandwidth capacities of the SBSs may be
violated by the above factors, the operator may need to endow
the base stations with additional bandwidth capacity, to ensure
the described approximation ratio. Nevertheless, in many cases,
the operator is unwilling (or, incapable) to perform additional
investments. Thus, the additional requests that reach an SBS
will be rerouted to the MBS, further increasing its load. How
much worse is the obtained result? Theorem 3 characterizes
the worst case scenario in terms of the quality of the resulted
solution.

Theorem 3: For any (α, β)-bi-criteria approximation al-
gorithm for the UHCMFL problem there is an (α+ (α−
1)c′)c′′(β)-approximation algorithm for the JRC-UR problem,
requiring the same computational complexity, where:

c′′(β)=

∑
k∈K

∑
i∈I(λki)−

∑
n∈N (Bn/s)∑

k∈K
∑

i∈I(λki)−((β−1)|I|+1)
∑

n∈N (Bn/s)
(18)

Proof: Let Hβ be the number of requests routed to the
SBSs and Rβ be the number of requests routed to the MBS,
according to the described reduction, when the capacities of
the facilities are violated by a factor of β. In reality, all the
requests beyond the capacities of the SBSs will be rerouted to
the MBS, as the SBSs can not serve them. Let H be the number
of requests served by the SBSs and R the number of requests
served by the MBS after this rerouting. Then, it holds:

R

Rβ
=

∑
k∈K

∑
i∈I(λki)−H∑

k∈K
∑

i∈I(λki)−Hβ

=

∑
k∈K

∑
i∈I(λki)−H∑

k∈K
∑

i∈I(λki)−H · ((β−1)|I|+1)

=

∑
k∈K

∑
i∈I(λki)−

∑
n∈N 
Bn

s �∑
k∈K

∑
i∈I(λki)−

∑
n∈N 
Bn

s � · ((β−1)|I|+1)
(19)

where the first equation holds because of the definition of the
terms H , Hβ , R and Rβ which yields that: Hβ +Rβ = H +
R =

∑
k∈K

∑
i∈I(λki). The second equation is because of

theorem 2: Hβ = H((β − 1)|I|+ 1). Finally, the last equation
holds because after the rerouting of requests each SBS will only
serve as many requests as its capacity allows. �

Theorem 3 combined with the results in Table II, provides
two approximation algorithms for the JRC-UR problem:

Corollary 2: There exists a polynomial time α3-
approximation algorithm and a quasi-polynomial time α4-
approximation algorithm, for the JRC-UR problem, for

α3 =(11 + 10c′)c′′(2) (20)

α4 = (log v + (log v − 1)c′) c′′(1 + ε), ε > 0, (21)

where v is the size of the instance of the UHCMFL problem
corresponding to the JRC-UR problem.

C. The Case of Uniform-Capacity SBSs

In this subsection, we focus on the special case of the JRC-
UR problem where the SBSs have equal transmission capac-
ities, i.e., Bn = B, ∀n ∈ N . For example, assume that SBSs
are of the same type, e.g., certain type of femtocells or pico-
cells. However, the cache sizes can be different. We can map
this problem to a certain UHCMFL problem in which all the
capacities of the facilities are equal and exploit the improved
approximation ratios that are known for this uniform capacity
setting. According to the reduction described in Section III-A,
for this special case of the problem, all the capacities of the
facilities are equal, i.e., Cj = B/s, ∀j ∈ A, except for the
facility aM , which has infinite capacity. Parameter aM can be
replaced by �

∑
k∈K

∑
i∈I λki/
B/s�� facilities each one of

capacity B/s. Clearly, the aggregate capacity of them suffices
to serve all the demand of the clients of the form bkij ∈
B1, ∀k, i, j and the new instance is equivalent to the initial.

Based on the above, Table II provides the following approx-
imation algorithms for the uniform-capacity JRC-UR problem.
Corollary 3 describes the results:

Corollary 3: For the uniform-capacities JRC-UR problem,
there exists an r1-bi-criteria approximation algorithm, and an
r2-approximation algorithm, such that:

r1 = (α+ (α− 1)c′, (β − 1)|I|+ 1) (22)

r2 = (α+ (α− 1)c′) c′′(β) (23)

for : (α, β) ∈ {(9, 4), (7.62, 4.29), (O(1), 2) , (5, 2),

(log v, 1 + ε), (10.173, 1.5), (30.432, 4/3)} , ε > 0,

where v is the size of the instance of the UHCMFL problem
corresponding to the JRC-UR problem.

D. A Closer Look to the Approximation Ratio Values

In general, the values of the approximation ratios highly
vary with the size of the UHCMFL instance (|V|), the number
of SBSs (N) and their capacities (Sn, Bn), the number of
files (|I|) and the number of user requests (

∑
k∈K

∑
i∈I λki).

For example, as ε goes to zero, the approximation ratio of
Algorithm 7 becomes log |V|+(log |V|−1)c′. Replacing in (12),
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Fig. 5. The impact of the number of SBSs to the approximation ratio. System
parameters: |I| = 100 files, unit file size, Bn/I = 0.05, Sn/I = 0.05, ∀n,
and 10,000 total user requests.

the value D =
∑

k∈K
∑

i∈I λki +NB|I| −NB that holds by
definition, Bn = B, ∀n ∈ N and c → 0, we can express c′ as:

c′ =
1

2
·
∑

k∈K
∑

i∈I λki +NB|I| −NB∑
k∈K

∑
i∈I λki −NB

=
1

2

(
1 +

|I|
f − 1

)

= ≈ 1

2

(
1 +

|I|
f

)
(24)

where

f =

∑
k∈K

∑
i∈I λki

NB
(25)

That is, the approximation ratio value scales proportionally to
the fraction of the number of files |I| to the congestion factor f
defined above. For example, Fig. 5 shows the approximation
ratio for the system parameters: |I| = 100, s = 1, Bn/I =
0.05, Sn/I = 0.05, ∀n, and

∑
k∈K

∑
i∈I(λki) = 10,000 and

for N ∈ {5, 10, . . . , 50}. Such set-ups are of importance as
it is nowadays well-known that a small portion of content
items is responsible for a large portion of the traffic (e.g., viral
video items) [28], [32]. Finally, interestingly enough, we notice
that the ratio increases only 40% when the number of SBSs
increases 500%.

Although not particularly tight in general, the derived ap-
proximation ratios constitute the first result in the area of
approximating a joint caching and routing problem for small
cell networks. Additionally, the proposed mapping ensures that
any improved approximation ratios for the facility location
problem that may appear in the near future will be applicable in
this caching problem (using the updated Table II). More impor-
tantly, as we show with an extensive numerical study in the next
section, the proposed algorithms operate much better than the
worst case conditions indicate in realistic network architectures.

V. PERFORMANCE EVALUATION

In this section, we present the numerical results of the
experiments that we have conducted to evaluate our derived
theoretical results. Specifically, using realistic system settings
we characterize the performance improvements offered by one
of the proposed algorithms over conventional caching schemes,

as well as its performance gap to the optimal solution. Please
notice that we have made a complete parameter analysis as
we have explored how the variation in all system parameters
affects the performance of the algorithm compared to other
similar schemes.

A. Simulation Setup and Methodology

We compare the performance of the four following schemes:
(1) Greedy: The naive approach according to which each

SBS caches the most popular files based on the requests
of the nearby users independently from the others. When
a request is generated, it is routed to the nearest SBS that
has stored a copy of the associated file.

(2) Iterative [7]: It starts with all the caches empty. At each
iteration, it places the file to a non-full cache that yields
the lowest value of the objective function in (3). The
algorithm terminates when all the caches become full.
When a request is generated, it is routed to the nearest
SBS that has stored a copy of the associated file.

(3) Facility: The routing and caching policies are jointly
derived by solving the instance of the facility location
problem using Algorithm 1 in Table II, as described in
detail in Section IV, and it is shown in Fig. 4.

(4) Optimal: The optimal solution of the JRC-UR problem
found through exhaustive search. Since its running
time is unacceptable large, i.e., in the scale of days,
using realistic system settings, Optimal is only used
as a benchmark for gauging the performance of the
proposed solutions and determine if there is still room
for improvement.

The performance criterion we use is the total number of
requests that reach the MBS (MBS load). To describe in
detail the performance improvements of the Facility scheme
compared to its alternatives, we also depict the normalized dif-
ference between the MBS load achieved by any of the first three
schemes and the Optimal (MBS load difference). Formally,
the MBS load difference of the Greedy algorithm is defined as:

MBS_loadGreedy −MBS_loadOptimal

MBS_loadOptimal
(26)

where MBS_loadscheme denotes the MBS load achieved by
the associated scheme, i.e., the value

∑
k∈K

∑
i∈I y

k
Mi. A sim-

ilar definition holds for the Iterative and the Facility Scheme.
Throughout, we consider a single MBS serving a circular-

shaped cell with radius 350 meters (typical of urban macrocell
[7]). We assume that N = 16 SBSs are randomly deployed
within it, each one having a communication range of 80 me-
ters. The system supports the service of a rich collection of
I = 1,000 unit-sized files. Unless otherwise specified, a large
number of K = 1,000 mobile users are uniformly placed in
random statistically independent positions in the cell. Each user
requests one file based on the zipf law with shape parameter
z = 0.8 [33], i.e., the probability that a request is for the jth
most popular file is: j−z/

∑|I|
i=1 i

−z . Each SBS n is endowed
with a cache of size Sn = S, ∀n ∈ N that is equal to 3% of
the entire file set size. Finally, its bandwidth Bn = B, ∀n ∈ N
suffices for transmitting 5% of the entire file set.
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Fig. 6. Performance comparison between Greedy, Iterative, Facility and Optimal scheme for various values of (a) the cache size, (b) the bandwidth capacity per
SBS and (c) the zipf parameter of the popularity distribution of the files.

B. Parameter Impact Analysis

1) Impact of the Cache Sizes: Fig. 6(a) compare the per-
formance of the discussed schemes as a function of the cache
size S of each SBS. Parameter S varies in our simulation
from 0.5% to 5% of the entire file set size. As expected,
increasing the available cache space, decreases the MBS load
for all the schemes, as more files are cached at the SBSs. More
importantly, as S increases the performance of Facility scheme
comes very close to the optimal one. Even for low values of
S, the Facility scheme operates very close to the Optimal (less
than 10% worse), and far better than the worst case condi-
tions indicate. Besides, the Facility scheme provides significant
performance gains, up to 38%, over the Greedy and Iterative
schemes. To elaborate on this, we observe that although the
Iterative scheme performs the cache placement more efficiently
than Greedy (since it places the files in multiple stages rather
than simultaneously), both schemes fail to appropriately route
the user requests to the SBSs. This is because, they both ignore
the bandwidth limitations of the SBSs (bandwidth-agnostic).

2) Impact of the Transmission Bandwidth Capacities: We
analyze the impact of the transmission bandwidth capacities
on the algorithms’ performance in Fig. 6(b). We vary the
bandwidth capacity per SBS B from 0.5% to 5% of the entire
file set size. As expected, increasing B, decreases the MBS
load, since the SBSs can serve more requests. We observe that
for low values of B, i.e., when the system is in overloaded
conditions, the performance of the three schemes is similar.
This is because, in these cases, simply caching the S most
popular file at each SBS suffices to fully utilize its bandwidth
capacity for almost all the SBSs. Interestingly, the perfor-
mance gap between Facility and Optimal scheme increases as
B increases in the range of 0 to 10%. This is because, as

explained in Section IV, the solution of the facility location
problem may violate the bandwidth capacities of the SBSs, and
redirecting the extra requests to the MBS further increases its
load. This is more crucial for high values of B. Finally, we note
that Facility scheme consistently outperforms the Greedy and
Iterative schemes, a gap that increases with B in the range of
0% to 25%.

3) Impact of the File Request Pattern: We explore the im-
pact of the steepness of the file request pattern on the algo-
rithms’ performance in Fig. 6(c). That is, how do the algorithms
perform as a small number of files become very popular (e.g.,
in the context of a social network [27]). Namely, we vary the
shape parameter z of the file popularity from the value 0.2 to 2.
We observe that as z increases, the MBS load decreases for
all the schemes, reflecting the well known fact that caching ef-
fectiveness improves as the popularity distribution gets steeper.
Besides, as z increases the performance gap between each
pair of the discussed algorithms is shrinking. This is because,
when z is high, the vast majority of user requests refer to a
small number of files. Clearly, caching the above files provides
significant benefits to the provider. To conclude, our algorithm
achieves a performance that is up to 31% better than the Greedy,
up to 17% better than Iterative, and less than 10% worse than
the optimal one.

4) Impact of the Demand Heterogeneity: To capture the
fact that different demand volumes may appear across differ-
ent regions in the cell (e.g., in the city center, a university
campus or a less popular venue), we synthesize a variety of
scenarios that differ in the way that user demand is generated
and investigate the impact of our algorithms in each. Specif-
ically, we allow each user to generate an integer number of
requests (not necessarily one) that is uniformly picked from
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Fig. 7. The impact of the heterogeneity of demand on the performance of the
Optimal, Facility, Iterative, and Greedy scheme.

a set [l, u], and denote this with l ∼ u. Then, we start placing
the users in uniform and independent positions in the cell and
(to ensure a fair comparison with Fig. 6) we stop as soon as
the total number of requests reaches the value 1000. Fig. 7
compares the performance of the four presented schemes for
the scenarios that l ∼ u is 1 ∼ 1, 1 ∼ 10 and 1 ∼ 100. The
MBS load increases more-or-less for all the schemes as the re-
quest heterogeneity increases. This can be explained by the
fact that, for heterogeneous demand, certain SBSs that are
close to users with large demand volumes exhibit very high
demand (that inevitably remains partially unserved), while the
rest are underloaded. Interestingly enough, we notice that the
performance of the bandwidth-agnostic schemes (i.e., Iterative
and Greedy) is rather sensitive to the heterogeneity of the
demand, while that of the Facility is more stable. Specifically,
we see that the MBS load when applying the Facility scheme
increases only 7.2%, while for the two heuristic schemes, the
increase is up to 32.58%.

Finally, we analyze the bandwidth capacity utilization for
each SBS in Fig. 8, for l ∼ u = 1 ∼ 1, S/I = 3%, B/I = 5%
and z = 0.8. Interestingly, we uncover examples of SBSs with
extremely low utilization under the operation of the Greedy
and Iterative schemes. We suspect these SBSs to be located
at remote areas of the cell, thus considered less preferable for
service by most of the users than the central ones. On the
contrary, Facility scheme mimics the way that content is cached
and delivered to the users according to the Optimal scheme, and
hence manages to utilize most of the SBS bandwidth to serve
the anticipated demand.

VI. RELATED WORK

Optimized caching policies have long been investigated
for wireline networks. Korupolu et al. [34] developed a
polynomial-time optimal algorithm for the hierarchical caching
problem. Their solution is based on a reduction to minimum
cost flow problem. Subsequently, Borst et al. [35] developed
approximation caching algorithms aiming to minimize the
bandwidth cost. In our previous work [36], we presented a
polynomial-time optimal algorithm for certain instances of that
problem, based on a reduction to a matching problem. However,

Fig. 8. The cumulative distribution function (CDF) of the per SBS bandwidth
utilization achieved by the Greedy, Iterative, Facility and Optimal scheme.

all the above results are based on the assumption that the link
capacities are never the bottleneck for the content delivery to
the users. In contrast, we consider here the realistic case that
hard bandwidth constraints limit the transmission of the cached
items at the base stations.

A method to further increase the benefits of caching is to
jointly design caching and routing policies. Related works
[16] and [37] studied the joint caching and request routing
problem in CDNs, while [15] provided a similar study for
IPTV networks. These works employ the Lagrangian relaxation
method and use iterative algorithms to reach a solution that
satisfies a certain optimality criterion. However, there is no
guarantee about the efficiency of the obtained result nor the
running time of the algorithms, which are only evaluated nu-
merically. Besides, these models assume that request routing is
fractional, i.e., an arbitrary portion of each user requests can be
served by different base stations. In contrast, in our model, the
routing variables are discrete and the proposed approximation
algorithms require fixed running time.

However, caching in small cell networks is a novel approach
[7]–[10], [38]–[45] and differs significantly from the above
architectures. Namely, there are multiple routes to the users,
i.e., the last hop link can be from the SBSs to the users or from
the MBS to the users. Additionally, the SBSs, unlike the routers
and servers in respective wireline networks, are (typically)
connected via low-speed backhaul links to the core network
and hence can not serve each others requests. Hence, the joint
routing and caching policy design problem must be revisited.
Previous works have designed optimal caching policies by
assuming that the transmission bandwidth of the base stations
suffices (non-congestible) to serve all the content requests. The
proposed schemes employ discrete/convex optimization tech-
niques [7], they are based on the content centric networking [8]
or the “stable-matching” [38] concept, or they are designed with
mobility-awareness [39] (users associate with multiple SBSs
as they move) and multicast-awareness [40] (requests for the
same file generated at nearby times are aggregated and served
via a single multicast transmission). Besides, they leverage a
wide range of technologies, such as: advanced video encoding
[41] (for different video frame-rates/SNR qualities/resolutions),
learning [10], [43] (for partially known content demand),
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cooperative MIMO [44] (for interference mitigation), and auc-
tion mechanisms [45] (for utility maximization of the small-
cell owners). However, when these links are congestible, either
due to limited resources or because user demand is massive, the
caching decisions should be designed with respect to routing
policies.

Our recent work in [46] extended the above model for the
scenario that allows for selectively fetching requested files on
demand through the (capacitated) backhaul links of the SBSs.
While it tackles a similar joint routing and caching problem,
the objectives are different (i.e., it explores the energy-delay
tradeoff of alternative video encoding schemes), and the result
of the optimization is evaluated numerically. In contrast, the
aim of this work is to present a novel optimization framework
for the problem of maximizing the fraction of user requests
absorbed by the SBSs which are connected by low-speed
backhaul links. Besides, this is the first work, building on our
initial study [1], that identifies this extensive relation of facility
location problems and caching in small cell networks.

VII. CONCLUSION

In this paper, we considered cellular networks enhanced with
small cell base stations (SBSs) and we studied the problem of
minimizing the user content requests that need to be routed to
the macrocell base stations. This is a problem of increasing
importance as currently the explosion of mobile data traffic
challenges mobile network operators. Unlike previous works,
we explicitly took into account both the constrained storage and
transmission bandwidth capacities of the SBSs. This scenario
is particularly important as SBSs are often deployed in highly
dense and congested urban areas.

We formulated the joint routing and caching policy design
problem (JRC-UR), which is an NP-hard problem, and we
introduced a novel approximation framework that allowed its
analytical study. Our methodology builds upon a connection
which we identified among the JRC-UR problem and the facil-
ity location variant problem known as UHCMFL. This enabled
the derivation of a set of polynomial time algorithms with
approximation guarantees. Numerical results based on realistic
system settings, illustrated the performance benefits of our
approach which more often than not, performs very close to the
optimal solution and much better than the worst case scenario,
i.e., the approximation bound. We believe that this work reveals
a particularly interesting connection between caching problems
in small cell networks and facility location problems, and paves
the road for exploiting the broad literature that is available for
the latter.
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