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Model Compression and Acceleration 
for Deep Neural Networks
The principles, progress, and challenges

In recent years, deep neural networks (DNNs) have received 
increased attention, have been applied to different applica-
tions, and achieved dramatic accuracy improvements in many 

tasks. These works rely on deep networks with millions or even 
billions of parameters, and the availability of graphics process-
ing units (GPUs) with very high computation capability plays 
a key role in their success. For example, Krizhevsky et al. [1]
achieved breakthrough results in the 2012 ImageNet Challenge 
using a network containing 60 million parameters with five 
convolutional layers and three fully connected layers. Usu-
ally, it takes two to three days to train the whole model on the 
ImagetNet data set with an NVIDIA K40 machine. In another 
example, the top face-verification results from the Labeled 
Faces in the Wild (LFW) data set were obtained with networks 
containing hundreds of millions of parameters, using a mix 
of convolutional, locally connected, and fully connected layers 
[2], [3]. It is also very time-consuming to train such a model 
to obtain a reasonable performance. In architectures that only 
rely on fully connected layers, the number of parameters can 
grow to billions [4].

Introduction
As larger neural networks with more layers and nodes are 
considered, reducing their storage and computational cost 
becomes critical, especially for some real-time applications 
such as online learning and incremental learning. In addition, 
recent years witnessed significant progress in virtual real-
ity, augmented reality, and smart wearable devices, creating 
unprecedented opportunities for researchers to tackle fun-
damental challenges in deploying deep-learning systems to 
portable devices with limited resources [e.g., memory, central 
processing units (CPUs), energy, bandwidth]. Efficient deep-
learning methods can have a significant impact on distributed 
systems, embedded devices, and field-programmable gate ar-
ray (FPGA) for artificial intelligence (AI). For example, the 
residual network-50 (ResNet-50) [5], which has 50 convolu-
tional layers, needs more than 95 megabytes of memory for 
storage, and numerous floating number multiplications for 
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calculating each image. After discarding 
some redundant weights, the network still 
works as usual but saved more than 75% of 
parameters and 50% computational time. 
For devices like cell phones and FPGAs 
with only  several megabyte resources, how 
to compact the models used on them is 
also important.

Achieving these goals calls for joint 
solutions from many disciplines, including 
but not limited to machine learning, opti-
mization, computer architecture, data com-
pression, indexing, and hardware design. 
In this article, we review recent works on compressing and 
accelerating DNNs, which attracted much attention from the 
deep-learning community and has already achieved signifi-
cant progress in past years.

We classify these approaches into four categories: 
1) Parameter pruning and sharing: The parameter pruning 

and sharing-based methods explore the redundancy in the 
model parameters and try to remove the redundant and 
noncritical ones. 

2) Low-rank factorization: Low-rank factorization-based 
techniques use matrix/tensor decomposition to estimate the 
informative parameters of the deep convolutional neural 
networks (CNNs).  

3) Transferred/compact convolutional filters: The trans-
ferred/compact convolutional filters-based approaches 
design special structural convolutional filters to reduce the 
storage and computation complexity.

4) Knowledge distillation (KD): The KD methods learn a dis-
tilled model and train a more compact neural network to 
reproduce the output of a larger network.
In Table 1, we briefly summarize these four types of meth-

ods. Generally, the parameter pruning and sharing, low-rank 
factorization, and KD approaches can be used in DNNs with 
fully connected layers and convolutional layers, achieving 
comparable performances. On the other hand, methods using 
transferred/compact filters are designed for models with con-

volutional layers only. Low-rank factoriza-
tion and transferred/compact filters-based 
approaches provide an end-to-end pipeline 
and can be easily implemented in a CPU/
GPU environment, which is straightfor-
ward, while parameter pruning and sharing 
use different methods such as vector quan-
tization, binary coding, and sparse con-
straints to perform the task. Usually, it will 
take several steps to achieve the goal.

Regarding training protocols, models 
based on parameter pruning/sharing low-
rank factorization can be extracted from 

pretrained ones or trained from scratch, while the transferred/
compact filter and KD models can only support training from 
scratch. These methods are independently designed and com-
plement each other. For example, transferred layers and pa-
rameter pruning and sharing can be used together, and model 
quantization and binarization can be used together with low-
rank approximations to achieve further speedup. We will de-
scribe the details of each theme and their properties, strengths, 
and drawbacks in the following sections.

Parameter pruning and sharing
An early work that showed that network pruning is effective in 
reducing the network complexity and addressed the overfitting 
problem is [6]. Since then, it has been widely studied to compress 
DNN models, trying to remove parameters that are not crucial to 
the model performance. These techniques can be further classi-
fied into three categories: model quantization and binarization, 
parameter sharing, and structural matrix.

Quantization and binarization
Network quantization compresses the original network by 
reducing the number of bits required to represent each weight. 
Gong et al. [6] and Wu et al. [7] applied k-means scalar quanti-
zation to the parameter values. Vanhoucke et al. [8] showed that 
8-bit quantization of the parameters can result in significant 
speedup with minimal loss of accuracy. The work in [9] used 

Table 1. A summary of different approaches for network compression.

Theme Name Description Applications More Details 

Parameter pruning and sharing Reducing redundant parameters that  
are not sensitive to the performance 

Convolutional layer and  
fully connected layer

Robust to various settings, can achieve 
good performance, can support both train-
ing from scratch and pretrained model

Low-rank factorization Using matrix/tensor decomposition to  
estimate the informative parameters 

Convolutional layer and  
fully connected layer

Standardized pipeline, easily implement-
ed, can support both training from scratch 
and pretrained model

Transferred/compact  
convolutional filters

Designing special structural convolutional  
filters to save parameters

Only for convolutional layer Algorithms are dependent on applications, 
usually achieve good performance, only 
support training from scratch

KD Training a compact neural network with  
distilled knowledge of a large model

Convolutional layer and  
fully connected layer

Model performances are sensitive to  
applications and network structure, only 
support training from scratch

As larger neural networks 
with more layers and 
nodes are considered, 
reducing their storage 
and computational 
cost becomes critical, 
especially for some real-
time applications such 
as online learning and 
incremental learning.
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16-bit fixed-point representation in stochastic rounding-based 
CNN training, which significantly reduced memory usage and 
float- point operations with little loss in classification accuracy.

The method proposed in [10] first pruned the unimportant con-
nections and retrained the sparsely connected networks. Then it 
quantized the link weights using weight-sharing, and then applied 
Huffman coding to the quantized weights as 
well as the codebook to further reduce the 
rate. As shown in  Figure 1, it starts by learn-
ing the connectivity via normal network train-
ing, followed by pruning the small-weight 
connections. Finally, the network is retrained 
to learn the final weights for the remaining 
sparse connections. This work achieves the 
state-of-the-art performance among all param-
eter quantization-based methods. It was shown in [11] that Hes-
sian weight could be used to measure the importance of network 
parameters and proposed to minimize Hessian-weighted quantiza-
tion errors on average for clustering network parameters. A novel 
quantization framework was introduced in [12], which reduced the 
precision of network weights to ternary values.

In the extreme case of 1-bit representation of each weight, i.e., 
binary weight neural networks, there are also many works that 
directly train CNNs with binary weights; for instance, Binary-
Connect [13], BinaryNet [14], and XNORNetworks [15]. The 
main idea is to directly learn binary weights or activations dur-
ing the model training. The systematic study in [16] showed that 
networks trained with backpropagation could be robust against 
(robust against or resilient to) specific weight distortions, includ-
ing binary weights.

Drawbacks
However, the accuracy of such binary nets is significantly low-
ered when dealing with large CNNs such as GoogleNet. Anoth-

er drawback of these binary nets is that existing binarization 
schemes are based on simple matrix approximations and ignore 
the effect of binarization on the accuracy loss. To address 
this issue, the work in [17] proposed a proximal Newton algo-
rithm with diagonal Hessian approximation that directly mini-
mizes the loss with respect to the binary weights. The work in 

[18] significantly reduced the time on float-
point multiplication in the training stage by 
stochastically binarizing weights and con-
verting multiplications in the hidden state 
computation to sign changes.

Pruning and sharing
Network pruning and sharing has been used 
both to reduce network complexity and to 

address the overfitting issue. An early approach to pruning was 
biased weight decay [19]. The optimal brain damage [20] and 
the optimal brain surgeon [21] methods reduced the number 
of connections based on the Hessian of the loss function, and 
their works suggested that such pruning gave higher accuracy 
than magnitude-based pruning such as the weight decay meth-
od. Those methods supported training from scratch. 

A recent trend in this direction is to prune redundant, non-
informative weights in a pretrained CNN model. For example, 
Srinivas and Babu [22] explored the redundancy among neurons 
and proposed a data-free pruning method to remove redundant 
neurons. Han et al. [23] proposed to reduce the total number of 
parameters and operations in the entire network. Chen et al. [24] 
proposed a HashedNets model that used a low-cost hash function 
to group weights into hash buckets for parameter sharing. The 
deep compression method in [10] removed the redundant connec-
tions and quantized the weights and then used Huffman coding 
to encode the quantized weights. In [25], a simple regularization 
method based on soft weight-sharing was proposed, which 

Original
Network

Train Connectivity

Prune Connections

Train Weights

Compressed
Network

Cluster the Weights

Generate Codebook

Quantize the Weights
with Codebook

Retrain Codebook

Encode Weights

Encode Index

FIGURE 1. The three-stage compression method proposed in [10]: pruning, quantization, and encoding. The input is the original model, and the output is 
the compression model.

Network pruning and 
sharing has been used 
both to reduce network 
complexity and to address 
the overfitting issue.
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included both quantization and pruning in one simple (re)train-
ing procedure. It is worth noting that the aforementioned prun-
ing schemes typically produce connection pruning in CNNs.

There is also growing interest in training compact CNNs 
with sparsity constraints. Those sparsity constraints are 
typically introduced in the optimization 
problem as l0  or l1-norm regularizers. 
The work in [26] imposed group sparsity 
constraints on the convolutional filters to 
achieve structured brain damage, i.e., prun-
ing entries of the convolution kernels in a 
group-wise fashion. In [27], a group-sparse 
regularizer on neurons was introduced 
during the training stage to learn compact 
CNNs with reduced filters. Wen et al. [28] 
added a structured sparsity regularizer on 
each layer to reduce trivial filters, chan-
nels, or even layers. In filter-level pruning, all of the afore-
mentioned works used l ,2 1-norm regularizers. The work in [29] 
used l1-norm to select and prune unimportant filters.

Drawbacks
There are some potential issues of the pruning and sharing 
works. First, pruning with l1  or l2  regularization requires 
more iterations to converge. Furthermore, all pruning criteria 
require manual setup of sensitivity for layers, which demands 
fine-tuning of the parameters and could be cumbersome for 
some applications.

Designing the structural matrix
In architectures that contain only fully connected layers, the 
number of parameters can grow up to billions [4]. Thus, it is 
critical to explore this redundancy of parameters in fully con-
nected layers, which is often the bottleneck in terms of memory 
consumption. These network layers use the nonlinear transforms 

( , ) ( ),f x M Mxv=  where ()v o  is an element-wise nonlinear 
operator, x  is the input vector, and M is the m n#  matrix of 
parameters. When M is a large general dense matrix, the cost 
of storing mn parameters and computing matrix-vector products 
in ( )O mn  time. Thus, an intuitive way to prune parameters is to 
impose x  as a parameterized structural matrix. An m n#  matrix 
that can be described using much fewer parameters than mn is 
called a structured matrix. Typically, the structure should not 
only reduce the memory cost but also dramatically accelerate the 
inference and training stage via fast matrix-vector multiplication 
and gradient computations.

Following this direction, the work in [30] proposed a sim-
ple and efficient approach based on circulant projections, 
while maintaining competitive error rates. Given a vector 

( , , , ),r r rr d0 1 1f= -  a circulant matrix R Rd d! #  is defined as
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Thus the memory cost becomes ( )dO  instead of ( ).dO 2  
This circulant structure also enables the use of fast Fou-
rier transform (FFT) to speed up the computation. Given a 
d-dimensional vector ,r  the 1-layer circulant neural network 
in (1) has time complexity of ( ).logd dO

In [31], a novel adaptive fastfood trans-
form was introduced to reparameterize the 
matrix-vector multiplication of fully con-
nected layers. The adaptive fastfood trans-
form matrix R Rn d! #  was defined as

 .R SHG HBP=  (2)

Here, , ,S G  and B  are random diago-
nal matrices. { , }0 1 d d!P #  is a random 
permutation matrix and H  denotes the 
Walsh–Hadamard matrix. Reparameteriz-

ing a fully connected layer with d  inputs and n  outputs using 
the adaptive fastfood transform reduces the storage and the 
computational costs from ( )ndO  to ( )nO  and from ( )ndO  to 

( ),logn dO  respectively.
The work in [32] showed the effectiveness of the new notion 

of parsimony in the theory of structured matrices. Their pro-
posed method can be extended to various other structured matrix 
classes, including block and multilevel Toeplitz-like [33] matrices 
related to multidimensional convolution [34].

Drawbacks
One potential problem of this kind of approach is that the struc-
tural constraint will cause loss in accuracy since the constraint 
might bring bias to the model. On the other hand, how to find a 
proper structural matrix is difficult. There is no theoretical way 
from which to derive it.

Low-rank factorization and sparsity
As convolution operations constitute the bulk of all computations 
in CNNs, simplifying the convolution layer would have a direct 
impact on the overall speedup. The convolution kernels in a typi-
cal CNN is a four-dimensional tensor. The key observation is that 
there might be a significant amount of redundancy in the tensor. 
Ideas based on tensor decomposition seem to be a particularly 
promising way to remove the redundancy. Regarding to the fully 
connected layer, it can be viewed as a two-dimensional (2-D) 
matrix and the low-rankness can also help.

Using low-rank filters to accelerate convolution has a long 
history. Typical examples include high-dimensional discrete 
cosine transform (DCT) and wavelet systems constructed 
from one-dimensional (1-D) DCT transform and 1-D wave-
lets, respectively, using tensor products. In the context of 
dictionary learning, Rigamonti et al. [35] suggested learning 
separable 1-D filters. In [36], a few low-rank approximation 
and clustering schemes for the convolutional kernels were 
proposed. They achieved 2# speedup for a single convolu-
tional layer with 1% drop in classification accuracy. The 
work in [37] suggested using different tensor decomposition 
schemes, reporting a .4 5# speedup with 1% drop in accuracy 

CNNs are parameter-efficient 
due to exploring the 
translation invariant property 
of the representations to 
input image, which is the key 
to the success of training 
very deep models without 
severe overfitting.
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in text recognition. In both works, the approximation was 
done layer by layer. After one layer was approximated by 
the low-rank filters, the parameters of that layer were fixed, 
and the layers above were fine-tuned based on a reconstruc-
tion error criterion. These are typical low-rank methods for 
compressing 2-D convolutional layers, which is described in 
Figure 2. In [38], canonical polyadic (CP) decomposition of 
the kernel tensors was proposed. Their work used nonlinear 
least squares to compute the CP decomposition, which was 
also based on the tensor decomposition idea. In [39], a new 
algorithm for computing the low-rank tensor decomposition 
and a new method for training low-rank constrained CNNs 
from scratch were proposed. It used batch normalization (BN) 
to transform the activations of the internal hidden units, and it 
was shown to be an effective way to deal with the exploding 
or vanishing gradients.

In principle, both the CP decomposition scheme and the 
decomposition scheme in [39] (BN low-rank) can be used to 
train CNNs from scratch. For the CP decomposition, finding 
the best low-rank approximation is an ill-posed problem, and 
the best rank-K approximation may not exist in the general 

case. For the scheme in [39], the decom-
position always exists and can achieve 
better performance than general CP. 
Table 2 lists a performance comparison 
of both methods. The actual speedup 
and compression rates are used to mea-
sure the performances. We can see that 
the BN version can achieve slightly bet-
ter performance while the CP version 
gives higher compression rates. 

Note that the fully connected layers 
can be viewed as a 2-D matrix and thus 
the aforementioned methods can also 
be applied there. There are several clas-
sical works on exploiting low-rankness 
in fully connected layers. For instance, 
Misha et al. [40] reduced the number 
of dynamic parameters in deep models 

using the low-rank method. Reference [41] explored a low-rank 
matrix factorization of the final weight layer in a DNN for 
acoustic modeling.

Drawbacks
Low-rank approaches are straightforward for model compres-
sion and acceleration. The idea complements recent advances 
in deep learning such as dropout, rectified units, and maxout. 
However, the implementation is not that easy since it involves 
a decomposition operation, which is computationally expen-
sive. Another issue is that current methods perform low-rank 
approximation layer by layer, and thus cannot perform global 
parameter compression, which is important as different lay-
ers hold different information. Finally, factorization requires 
extensive model retraining to achieve convergence when com-
pared to the original model.

Transferred/compact convolutional filters
CNNs are parameter-efficient due to exploring the transla-
tion invariant property of the representations to input image, 
which is the key to the success of training very deep models 
without severe overfitting. Although a strong theory is cur-
rently missing, a large amount of empirical evidence sup-
ports the notion that both the translation invariant property 
and convolutional weight-sharing are important for good 
predictive performance. The idea of using transferred con-
volutional filters to compress CNN models is motivated by 
recent works in [42], which introduced the equivariant group 
theory. Let x  be an input, ( )$U  be a network or layer, and 

( )T $  be the transform matrix. The concept of equivariance 
is defined as

 ,x xT TU U=l ^ ^h h  (3)

which says that transforming the input x  by the transform 
( )T $  and then passing it through the network or layer (·)U  

should give the same result as first mapping x  through the 
network and then transforming the representation. Note that, 

Table 2. Comparisons between the low-rank models and their baselines 
on ILSVRC-2012.

Model TOP-5 Accuracy Speedup Compression Rate

AlexNet 80.03% 1 1 

BN low-rank 80.56% 1.09 4.94 

CP low-rank 79.66% 1.82 5 

VGG-16 90.60% 1 1 

BN low-rank 90.47% 1.53 2.72 

CP low-rank 90.31% 2.05 2.75 

GoogleNet 92.21% 1 1 

BN low-rank 91.88% 1.08 2.79 

CP low-rank 91.79% 1.20 2.84 

Original Framework Low-Rank
Factorization Framework

(b)(a)

FIGURE 2. A typical framework of the low-rank regularization method. (a) is the original convolutional 
layer, and (b) is the low-rank constraint convolutional layer with rank-K.
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in [42], the transforms ( )T $  and ( )T $l  are not necessarily 
the same as they operate on different objects. According to 
this theory, it is reasonable to apply the transform to layers 
or filters ( )$U  to compress the whole network models. From 
empirical observation, deep CNNs also benefit from using a 
large set of convolutional filters by applying a certain trans-
form ( )T $  to a small set of base filters since it acts as a regu-
larizer for the model.

Following this trend, there are many recent works proposed 
to build a convolutional layer from a set of base filters [42]–
[45]. What they have in common is that the transform ( )T $  
lies in the family of functions that only operate in the spatial 
domain of the convolutional filters. For 
example, the work in [44] found that the 
lower convolution layers of CNNs learned 
redundant filters to extract both positive and 
negative phase information of an input sig-
nal, and defined ( )T $  to be the simple nega-
tion function

 .W WT x x= -^ h  (4)

Here, Wx  is the basis convolutional filter 
and Wx

- is the filter consisting of the shifts whose activation is 
opposite to that of Wx  and selected after max-pooling opera-
tion. By doing this, the work in [44] can easily achieve 2# com-
pression rate on all the convolutional layers. It is also shown that 
the negation transform acts as a strong regularizer to improve 
the classification accuracy. The intuition is that the learning 
algorithm with pair-wise positive-negative constraint can lead 
to useful convolutional filters instead of redundant ones.

In [45], it was observed that magnitudes of the responses 
from convolutional kernels had a wide diversity of pattern rep-
resentations in the network, and it was not proper to discard 
weaker signals with a single threshold. Thus, a multibias non-
linearity activation function was proposed to generate more 
patterns in the feature space at low computational cost. The 
transform ( )T $  was define as

 ,x WT x dU = +l ^ h  (5)

where d  were the multibias factors. The work in [46] consid-
ered a combination of rotation by a multiple of 90° and hori-
zontal/vertical flipping with

 ,x WT TU = il ^ h  (6)

where WTi  was the transformation matrix that rotated the orig-
inal filters with angle { , , }.90 180 270!i  In [42], the transform 
was generalized to any angle learned from data, and i  was 
directly obtained from data. Both [46] and [42] can achieve 
good classification performance.

Reference [43] defined ( )T $  as the set of translation func-
tions applied to 2-D filters

 ,, ,T x y·xT , , , , , ( , )x y k k x y 0 0U = f !! -l ^ ^ ^h h h" ,  (7)

where (·, , )T x y  denoted the translation of the first oper-
and by ( , )x y  along its spatial dimensions, with proper zero 
padding at borders to maintain the shape. The proposed 
framework can be used to 1) improve the classification accu-
racy as a regularized version of maxout networks and 2) 
to achieve parameter efficiency by flexibly varying their 
architectures to compress networks.

Table 3 briefly compares the performance of different 
methods with transferred convolutional filters, using VGG-
Net (16 layers) as the baseline model. The results are report-
ed on the CIFAR-10 and CIFAR-100 data sets with top-five 
error rates. It is observed that they can achieve reduction in 

parameters with little or no drop in clas-
sification accuracy.

Drawbacks
There are several issues that need to be 
addressed for approaches that apply transfer 
information to convolutional filters. First, 
these methods can achieve competitive per-
formance for wide/flat architectures (like 
VGGNet) but not narrow/special ones (like 
GoogleNet and ResNet). Second, the trans-

fer assumptions sometimes are too strong to guide the algo-
rithm, making the results unstable on some data sets.

Using a compact filter for convolution can directly reduce 
the computation cost. The key idea is to replace the loose and 
overparametric filters with compact blocks to improve the 
speed, which significantly accelerate CNNs on several bench-
marks. Decomposing 3 3#  convolution into two 1 1#  con-
volutions was used in [47], which achieved state-of-the-art 
acceleration performance on object recognition. SqueezeNet 
[48] was proposed to replace 3 3#  convolution with 1 1#  
convolution, which created a compact neural network with 
approximately 50 fewer parameters and comparable accuracy 
when compared to AlexNet.

KD
To the best of our knowledge, exploiting knowledge transfer to 
compress model was first proposed by Caruana et al. [49]. They 
trained a compressed model with pseudo-data labeled by an 
ensemble of strong classifiers and reproduced the output of the 
original larger network. However, their work is limited to shal-
low models. The idea has been recently adopted in [50] as KD 
to compress deep and wide networks into shallower ones, where 

Table 3. Comparisons of different approaches based on transferred 
convolutional filters on CIFAR-10 and CIFAR-100.

Model CIFAR-100 CIFAR-10 Compression Rate

VGG-16 34.26% 9.85% 1 

MBA [45] 33.66% 9.76% 2 

CRELU [44] 34.57% 9.92% 2 

CIRC [42] 35.15% 10.23% 4 

DCNN [43] 33.57% 9.65% 1.62 

The basic idea of KD is to 
distill knowledge from a 
large teacher model into  
a small one by learning  
the class distributions 
output by the teacher  
via softened softmax.
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the compressed model mimicked the function learned by the 
complex model. The basic idea of KD is to distill knowledge 
from a large teacher model into a small one by learning the 
class distributions output by the teacher via softened softmax.

The work in [51] introduced a KD compression framework, 
which eased the training of deep networks by following a student-
teacher paradigm, in which the student was penalized according 
to a softened version of the teacher’s output. The framework 
compressed an ensemble of deep networks (teacher) into a stu-
dent network of similar depth. To do so, the student was trained 
to predict the output of the teacher, as well as the true classifica-
tion labels. Despite its simplicity, KD demonstrates promising 
results in various image classification tasks. The work in [52] 
aimed to address the network compression 
problem by taking advantage of depth neural 
networks. It proposed an approach to train 
thin and deep networks, called FitNets, to 
compress wide and shallower (but still deep) 
networks. The method was rooted in KD and 
extended the idea to allow for thinner and 
deeper student models. To learn from the 
intermediate representations of the teacher 
network, FitNet made the student mimic the full feature maps of 
the teacher. However, such assumptions are too strict since the 
capacities of teacher and student may differ greatly. In certain 
circumstances, FitNet may adversely affect the performance and 
convergence. All the aforementioned methods are validated on 
the MNIST, CIFAR-10, CIFAR-100, SVHN, and AFLW bench-
mark data sets, and simulation results show that these methods 
match or outperform the teacher’s performance, while requiring 
notably fewer parameters and multiplications.

There are several extensions along this direction of distilla-
tion knowledge. The work in [53] trained a parametric student 
model to approximate a Monte Carlo teacher. The proposed 
framework used online training and used DNNs for the student 
model. Different from previous works, which represented the 
knowledge using the softened label probabilities, [54] repre-
sented the knowledge by using the neurons in the higher hidden 
layer, which preserved as much information as the label prob-
abilities, but are more compact. The work in [55] accelerated 
the experimentation process by instantaneously transferring 
the knowledge from a previous network to each new deeper 
or wider network. The techniques are based on the concept 
of function-preserving transformations between neural net-
work specifications. Zagoruyko et al. [56] proposed attention 
transfer to relax the assumption of FitNet. They transferred the 
attention maps that are summaries of the full activations.

Drawbacks
KD-based approaches can make deeper models thinner and 
help significantly reduce the computational cost. However, 
there are a few disadvantages. One of them is that KD can only 
be applied to classification tasks with softmax loss function, 
which hinders its usage. Another drawback is that the model 
assumptions sometimes are too strict to make the performance 
competitive with other types of approaches.

Other types of approaches
We first summarize the works utilizing attention-based 
methods. Note that attention-based systems [57] can reduce 
computations significantly by learning to selectively focus or 
“attend to” a few, task-relevant input regions. The work in [57] 
introduced the dynamic capacity network that combined two 
types of modules: the small subnetworks with low capacity, and 
the large ones with high capacity. The low-capacity subnetworks 
were active on the whole input to first find the task-relevant areas 
in the input, and then the attention mechanism was used to di-
rect the high-capacity subnetworks to focus on the task-relevant 
regions in the input. By doing this, the size of the CNN model 
could be significantly reduced.

Following this direction, the work in 
[58] introduced the conditional computation 
idea, which only computes the gradient for 
some important neurons. It proposed a new 
type of general-purpose neural network com-
ponent: a sparsely gated mixture-of-experts 
(MoE) layer. The MoE consisted of a number 
of experts, each a simple feed-forward neural 
network, and a trainable gating network that 

selected a sparse combination of the experts to process each input. 
In [59], dynamic DNNs (D2NNs) were introduced, which were a 
type of feed-forward DNN that selected and executed a subset of 
D2NN neurons based on the input.

There have been other attempts to reduce the number of 
parameters of neural networks by replacing the fully con-
nected layer with global average pooling [43], [60]. Network 
architectures, such as GoogleNet or network in network, 
can achieve state-of-the-art results on several benchmarks 
by adopting this idea. However, transfer learning, i.e., reus-
ing features learned on the ImageNet data set and applying 
them to new tasks, is more difficult with this approach. This 
problem was noted by Szegedy et al. [60] and motivated 
them to add a linear layer on  top of their networks to enable 
transfer learning.

The work in [61] targeted the ResNet-based model with a 
spatially varying computation time, called stochastic depth, 
which enabled the seemingly contradictory setup to train short 
networks and used deep networks at test time. It started with 
very deep networks and, while during training, for each mini-
batch, randomly dropped a subset of layers and bypassed them 
with the identity function. This model is end-to-end trainable, 
deterministic, and can be viewed as a black-box feature extrac-
tor. Following this direction, the work in [62] proposed a pyra-
midal residual network with stochastic depth.

Other approaches to reduce the convolutional overheads 
include using FFT-based convolutions [63] and fast convolution 
using the Winograd algorithm [64]. Those works only aim to 
speedup the computation but not reduce the memory storage.

Benchmarks, evaluation, and databases
In the past five years, the deep-learning community has made 
great efforts in benchmark models. One of the most well-
known models used in compression and acceleration for CNNs 
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is Alexnet [1], which occasionally has been 
used for assessing the performance of com-
pression. Other popular standard models 
include LeNets [65], All-CNN-nets [66], 
and many others. LeNet-300-100 is a fully 
connected network with two hidden layers, 
with 300 and 100 neurons each. LeNet-5 is 
a convolutional network that has two convo-
lutional layers and two fully connected layers. Recently, more 
state-of-the-art architectures are used as baseline models in 
many works, including network in networks [67], VGGNets 
[68], and ResNets [69]. Table 4 summarizes the baseline mod-
els commonly used in several typical compression methods.

The standard criteria to measure the quality of model com-
pression and acceleration are the compression and the speedup 
rates. Assume that a  is the number of the parameters in the 
original model M  and *a  is that of the compressed model * ,M  
then the compression rate *( , )M Ma  of *M  over M  is

 *, .
*

M M
a
a

a =^ h  (8)

Another widely used measurement is the index space saving 
defined in several papers [70], [71] as

 *, ,
*

*M M
a

a a
b = -^ h  (9)

where a  and a  are the number of the dimension of the index 
space in the original model and that of the compressed 
model, respectively.

Similarly, given the running time s  of M  and *s  of * ,M  the 
speedup rate *( , )M Md  is defined as

 *s*, .M M s
d =^ h  (10)

Most work used the average training time per epoch to mea-
sure the running time, while in [70] and [71], the average 
testing time was used. Generally, the compression rate and 
speedup rate are highly correlated, as smaller models often 
results in faster computation for both the training and the 
testing stages.

Good compression methods are expected to achieve almost 
the same performance as the original model with much smaller 
parameters and less computational time. However, for differ-
ent applications with varying CNN designs, the correlation 
between parameter size and computational time may be dif-
ferent. For example, it is observed that, for deep CNNs with 
fully connected layers, most of the parameters are in the fully 
connected layers; while for image classification tasks, float-
point operations are mainly in the first few convolutional lay-
ers since each filter is convolved with the whole image, which 
is usually very large at the beginning. Different applications 
should focus on different layers.  

Discussion and challenges
In this article, we summarized recent works on compress-
ing and accelerating DNNs. Here we discuss more details 

about how to choose different compression 
approaches and possible challenges/solu-
tions in this area.

General suggestions
There is no golden rule to measure which one 
of the four kinds of approaches is the best. How 
to choose the proper approaches is really de-

pendent on the applications and requirements. Here, we provide 
some general suggestions.

 ■ If the applications needs compacted models from pretrained 
models, one can choose either pruning and sharing or low-
rank factorization-based methods. If end-to-end solutions 
are needed for the problem, the low-rank and transferred 
convolutional filters approaches are preferred.

 ■ For applications in some specific domains, methods with 
human prior (like the transferred convolutional filters and 
structural matrix) sometimes have benefits. For example, 
when conducting medical images classification, transferred 
convolutional filters should work well as medical images 
(like organs) do have the rotation transformation property.

 ■ Usually, the approaches of pruning and sharing could give 
a reasonable compression rate while not hurting the accu-
racy. Thus, for applications that require stable model accu-
racy, it is better to utilize pruning and sharing.

 ■ If a problem involves small- or medium-size data sets, one 
can try the KD approaches. The compressed student model 
can take the benefit of transferring knowledge from the 
teacher model, making it a robust data set that is not large.

 ■ As we mentioned in the “Introduction,” techniques of the 
four themes are orthogonal. It makes sense to combine two 
or three of them to maximize the compression/speedup 
rates. For some specific applications, like object detection, 
which requires both convolutional and fully connected lay-
ers, one can compress the convolutional layers with low-
rank factorization and the fully connected layers with a 
pruning method.

Table 4. A summary of baseline models used in  
different representative works of network compression.

Baseline Models Representative Works 

Alexnet [1] Structural matrix [30]–[32] 

Low-rank factorization [39] 

Network in network [67] Low-rank factorization [39] 

VGGNets [68] Transferred filters [43] 

Low-rank factorization [39] 

ResNets [69] Compact filters [48], stochastic depth [61]

Parameter sharing [25] 

All-CNN-nets [66] Transferred filters [44] 

LeNets [65] Parameter sharing [25] 

Parameter pruning [21], [23] 

Proposing some general/
unified approaches is  
one direction that can  
be taken regarding  
the use of CNNs in  
small platforms.
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Technique challenges
Techniques for deep model compression 
and acceleration are still in the early stages, 
and the following challenges still need to 
be addressed.

 ■ Most of the current state-of-the-art ap  -
proaches are built on well-designed 
CNN models, which have limited free-
dom to change the configuration (e.g., 
network structural, hyperparameters). 
To handle more complicated tasks, it should provide more 
plausible ways to configure the compressed models.

 ■ Pruning is an effective way to compress and accelerate 
CNNs. Current pruning techniques are mostly designed to 
eliminate connections between neurons. On the other hand, 
a pruning channel can directly reduce the feature map 
width and shrink the model into a thinner one. It is efficient 
but also challenging because removing channels might dra-
matically change the input of the following layer. It is 
important to focus on how to address this issue.

 ■ As we mentioned previously, methods of structural matrix 
and transferred convolutional filters impose prior human 
knowledge to the model, which could significantly affect 
the performance and stability. It is critical to investigate 
how to control the impact of the imposed prior knowledge.

 ■ The methods of KD provide many benefits such as directly 
accelerating the model without special hardware or imple-
mentations. It is still worth it to develop KD-based 
approaches and explore how to improve the performance.

 ■ Hardware constraints in various of small platforms (e.g., 
mobile, robotic, self-driving cars) are still a major problem 
that hinder the extension of deep CNNs. How to make full 
use of the limited computational source available and how 
to design special compression methods for such platforms 
are still challenges that need to be addressed.

Possible solutions
To solve the hyperparameters configuration problem, we can 
rely on the recent learning-to-learn strategy [72], [73]. This 
framework provides a mechanism, allowing the algorithm to 
automatically learn how to exploit structure in the problem of 
interest. There are two different ways to combine the learning-
to-learn module with the model compression. The first designs 
compression and learning-to-learn simultaneously, while the 
second way first configures the model with learn-to-learning 
and then prunes the parameters.

Channel pruning provides the efficiency benefit on 
both CPUs and GPUs because no special implementation is 
required. But it is also challenging to handle the input con-
figuration. One possible solution is to use the training-based 
channel pruning methods [74], which focus on imposing sparse 
constraints on weights during training, and could adaptively 
determine hyperparameters. However, training from scratch 
for such a method is costly for very deep CNNs.

Exploring new types of knowledge in the teacher models 
and transferring it to the student models is useful for the KD 

approaches. Instead of directly reducing 
and transferring parameters from the teach-
er models, passing selectivity knowledge of 
neurons could be helpful. One can derive 
a way to select essential neurons related to 
the task. The intuition is that, if a neuron 
is activated in certain regions or samples, 
this implies these regions or samples share 
some common properties that may relate 
to the task. Performing such steps is time-

consuming, thus efficient implementation is important.
For methods with convolutional filters and the structural 

matrix, we can conclude that the transformation lies in the 
family of functions that only operations on the spatial dimen-
sions. Hence, to address the imposed prior issue, one solution 
is to provide a generalization of the aforementioned approach-
es in two aspects: 1) instead of limiting the transformation 
to belong to a set of predefined transformations, let it be the 
whole family of spatial transformations applied to 2-D filters 
or the matrix, and 2) learn the transformation jointly with all 
of the model parameters.

Proposing some general/unified approaches is one direction 
that can be taken regarding the use of CNNs in small platforms. 
Yuhen et al. [75] presented a feature map dimensionality reduc-
tion method by excavating and removing redundancy in feature 
maps generated by different filters, which could also preserve 
intrinsic information of the original network. The idea can be 
extended to make CNNs more applicable for different platforms. 
The work in [76] proposed a one-shot whole network compres-
sion scheme consisting of three components: rank selection, low-
rank tensor decomposition, and fine-tuning to make deep CNNs 
work in mobile devices. From the systematic side, Facebook 
released the platform Caffe2 [77], which employed a particularly 
lightweight and modular framework and included mobile-specif-
ic optimizations based on the hardware design. Caffe2 can help 
developers and researchers train large machine-learning models 
and deliver AI on mobile devices.
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