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Channel Shortening and DMT

• Extensively used in Discrete Multitone (DMT) 
System to minimize ISI and ICI
– xDSL
– OFDM

• DMT
– divide overall channel into multiple subchannels
– IFFT/FFT used for transmit and receive, respectively
– no ISI if each subchannel has constant gain and perfect 

sampling (ideal case)
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Zero-forcing Equalizer

• Assume FIR model for C
• Problems:

– C has to be minimum phase
– zeros close to the unit circle in C

• poles close to unit circle in C-1 à large noise gain

η(n)

x(n) C C-1

transmitter receiver

Zero-forcing equalizer

+ y(n)
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“Imperfect” Equalization

• Cyclic prefix (CP) is used to minimize ISI and ICI
• Divide input stream into blocks, say of length M 
• L symbols at the end of each block is copied to 

form the CP – periodic sequence
• ISI only affects the L samples in each block

ML
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Cyclic Prefix

• Advantages:
– C does not have to be minimum phase
– robust toward channel noise amplification
– Easy to implement
– Only need a simple frequency-domain equalizer to 

cancel magnitude and phase distortion in the remaining 
M samples

• Disadvantage:
– Decrease transmission efficiency by M/(M+L)
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DMT System Analysis (1)

• If L < M, system can be modeled as:

• C is a circulant matrix of the form (L=3, M=6)
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DMT System Analysis (2)

• Can diagonalize the circulant matrix using 
DFT matrix: C = W-1ΛW

• Zero-forcing equalizer requires having C-1

at the receiving: C-1 = W-1Λ-1W
• W-1 = (Λ-1WC)-1
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DMT System Analysis (3)

Design to minimize 
magnitude/phase 
distortionx(n) W-1 C

W Λ-1transmitter

receiver

+

η(n)

y(n)

x(n) W-1C W Λ-1

receiver

+

η(n)

y(n)
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IFFT Transmitter

N-point 
IFFT

X0

X1

XN/2-1

X*
(N/2)

X*
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X*
2

x0

x2

x1

x(N/2)-1

•N DMT symbols in à N/2 symbols out

•Ensures real-valued time domain output
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What is Time-Domain Equalizer?

• CP length ≥ Lc +1

• Lc shortened à CP length 
shortened à higher throughput

• Shorten channel with TEQ
– window out the undesired portion 

of the channel

• Some design objectives
– Minimize ISI power
– Maximize bit rate
– Minimize BER

ISI

Signal
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Effect of TEQ
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Past Work

• various TEQ design approach
– MMSE [Falconer & Magee, 1973]

– Maximize shortening SNR (MSSNR)
• [Melsa & et. al., 1996]
• [Wang & et. al., 1999]

– Maximize Bit Rate
• MGSNR [Al-Dhahir & Cioffi, 1967, Farhang-Boroujeny & Ding, 

2001]
• MBR [Arslan, Evans and et. al.,2001]

– ISI power/AWGN
• ISI only [Schur & Speidel, 2001]
• ISI + AWGN [Tkacenko & Vaidyanathan, 2002]
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MMSE

• MMSE achieved when: wTRxy = hTRyy

• Disadvantages:
– don’t consider BER
– don’t consider bit rate
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MSSNR (1)

• Deal with shortening channel directly
• Idea: 

– ISI lies outside the shortened CIR
– Maximize/minimize SNR inside/outside TEQ window
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MSSNR (2)

• Disadvantages:
– leakage effect of FFT subbands not taken care of
– doesn’t account for additive noise
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Maximize Bit Rate

• Bit rate expression:
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MGSNR (1)

• Maximize geometric SNR (MGSNR)
– replace SNR with GSNR

• Assume:
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MGSNR (2)

• Maximize bit rate becomes maximizing the 
GSNR

• Disadvantage: cannot achieve optimal 
solution (as shown in MBR)
– too much assumptions and approximations in 

GSNR expression
– does not include ISI power



Dept. of EEE, HKUST 21

MBR (1)

• Works with original bDMT expression with

– SNRi expression that includes ISI power
– assume Γi = Γ only
– achieve near optimal solution for achievable bit rate
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MBR (2)

• Disadvantages:
– High BER (compared to our design)
– Requires nonlinear optimization
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Eigenfilter TEQ (1)

• Trade-off between additive noise and ISI power to 
allow more design freedom

• Able to get a global optimal using Rayleigh quotient
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EIGFILT (2)

• Disadvantage:
– high BER (compared to our design)
– does not account for the bit rate
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Can we do better on BER?

• ISI taken care of by the CP
• Minimize the channel noise à minimize the BER

– fixed ISI noise as a constraint

• Exact computation of BER not available analytically
– Minimize a tight bound instead à Chernoff bound

• Chernoff bound of Q-function
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Chernoff TEQ design
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Notations
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Comparison

• Chernoff (Fung & Kok, 2003)
– minimize BER

• EIGFILT (Tkacenko & Vaidyanathan, 
2002)
– minimize ISI power/additive noise power

• MBR (Arslans, Evans & et. al., 2001)
– maximize bit rate
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Design Parameters

Input signal power 14 dBm
AWGN power -110 dBm

Length of equalizer 16 – 45 taps
Desired length of effective

channel
33/48

Delay of effective channel 10 (Chernoff and EIGFILT)
Channel CSA loop 1, 2, 6

Channel length 512
Size of DFT 512

Sampling frequency 2.208 MHz
µ 0.5 – 0.95
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Results - different TEQs (1)
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Results - different TEQs (2)
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Robustness - different channel lengths
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Robustness - colored noise
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Conclusion

• BER optimized TEQ design
• Better BER than EIGENFILT and MBR
• Robustness:

– different channel length
– colored noise

• Closed form expression?
– Iterative solution possible

• Further investigation on the effect of µ
• Can we incorporate both objectives?

– Maximize bit rate
– Minimize BER
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