Improved Detection Performance for Channel Shortening

Carrson C. Fung and Chi-Wah Kok Dept. of Electrical and Electronic Engineering Hong Kong University of Science & Technology

Channel Shortening and DMT

- Extensively used in Discrete Multitone (DMT) System to minimize ISI and ICI
 - xDSL
 - OFDM
- DMT
 - divide overall channel into multiple subchannels
 - IFFT/FFT used for transmit and receive, respectively
 - no ISI if each subchannel has constant gain and perfect sampling (ideal case)

Zero-forcing Equalizer

- Assume FIR model for **C**
- Problems:
 - C has to be minimum phase
 - zeros close to the unit circle in **C**
 - poles close to unit circle in $C^{-1} \rightarrow$ large noise gain

"Imperfect" Equalization

- Cyclic prefix (CP) is used to minimize ISI and ICI
- Divide input stream into blocks, say of length *M*
- *L* symbols at the end of each block is copied to form the CP periodic sequence
- ISI only affects the L samples in each block

Cyclic Prefix

- Advantages:
 - C does not have to be minimum phase
 - robust toward channel noise amplification
 - Easy to implement
 - Only need a simple frequency-domain equalizer to cancel magnitude and phase distortion in the remaining M samples
- Disadvantage:
 - Decrease transmission efficiency by M/(M+L)

DMT System Analysis (1)

- If L < M, system can be modeled as: $\mathbf{y}(m) = \mathbf{C}\mathbf{x}(m)$ $\mathbf{x}(m) = \begin{bmatrix} x(mM) & x(mM+1) & \cdots & x(mM+M-1) \end{bmatrix}^T$ $\mathbf{y}(m) = \begin{bmatrix} y(J_m) & y(J_m+1) & \cdots & y(J_m+M-1) \end{bmatrix}^T$ $J_m = m(L+M) + L$
- C is a circulant matrix of the form (L=3, M=6) $\mathbf{C} = \begin{bmatrix} c(0) & 0 & 0 & c(3) & c(2) & c(1) \\ c(1) & c(0) & 0 & 0 & c(3) & c(2) \\ c(2) & c(1) & c(0) & 0 & 0 & c(3) \\ c(3) & c(2) & c(1) & c(0) & 0 & 0 \\ 0 & c(3) & c(2) & c(1) & c(0) & 0 \\ 0 & c(4) & c(3) & c(2) & c(1) & c(0) \end{bmatrix}$

DMT System Analysis (2)

- Can diagonalize the circulant matrix using DFT matrix: C = W⁻¹LW
- Zero-forcing equalizer requires having C^{-1} at the receiving: $C^{-1} = W^{-1}L^{-1}W$

•
$$W^{-1} = (L^{-1}WC)^{-1}$$

DMT System Analysis (3)

IFFT Transmitter

•N DMT symbols in → N/2 symbols out
•Ensures real-valued time domain output

What is Time-Domain Equalizer?

- CP length $\geq L_c + 1$
- L_c shortened \rightarrow CP length shortened \rightarrow higher throughput
- Shorten channel with TEQ
 - window out the undesired portion of the channel
- Some design objectives
 - Minimize ISI power
 - Maximize bit rate
 - Minimize BER

Effect of TEQ

Channel impulse response (normalized), alpha = 1.000, Ld = 33, Le = 16

Past Work

• various TEQ design approach

- MMSE [Falconer & Magee, 1973]
- Maximize shortening SNR (MSSNR)
 - [Melsa & et. al., 1996]
 - [Wang & et. al., 1999]
- Maximize Bit Rate
 - MGSNR [Al-Dhahir & Cioffi, 1967, Farhang-Boroujeny & Ding, 2001]
 - *MBR* [Arslan, Evans and et. al., 2001]
- ISI power/AWGN
 - ISI only [Schur & Speidel, 2001]
 - ISI + AWGN [Tkacenko & Vaidyanathan, 2002]

MMSE

- MMSE achieved when: $\mathbf{w}^{\mathrm{T}}\mathbf{R}_{\mathrm{xy}} = \mathbf{h}^{\mathrm{T}}\mathbf{R}_{\mathrm{yy}}$
- Disadvantages:
 - don't consider BER
 - don't consider bit rate

MSSNR (1)

- Deal with shortening channel directly
- Idea:
 - ISI lies outside the shortened CIR
 - Maximize/minimize SNR inside/outside TEQ window

$$\max_{\mathbf{h}} (\text{SSNR in dB}) = \max_{\mathbf{h}} 10 \log_{10} \left(\frac{\text{energy inside window after TEQ}}{\text{energy outside window after TEQ}} \right)$$
$$= \max_{\mathbf{h}} 10 \log_{10} \frac{\mathbf{c}_{in}^{T} \mathbf{c}_{in}^{T}}{\mathbf{c}_{out}^{T} \mathbf{c}_{out}^{T}}$$
$$= \max_{\mathbf{h}} 10 \log_{10} \frac{\mathbf{h}^{T} \mathbf{C}_{in}^{T} \mathbf{C}_{out} \mathbf{h}}{\mathbf{h}^{T} \mathbf{C}_{out}^{T} \mathbf{C}_{out} \mathbf{h}}$$
$$= \max_{\mathbf{h}} 10 \log_{10} \frac{\mathbf{h}^{T} \mathbf{Bh}}{\mathbf{h}^{T} \mathbf{Ah}} \quad \text{s.t. } \mathbf{h}^{T} \mathbf{Bh} = 1$$

 $\mathbf{h}_{opt} = \left(\sqrt{\mathbf{B}^T}\right)^{-1} \mathbf{q}_{\min} \quad \mathbf{q}_{\min} : \text{eigenvector of min eigenvalue of } \mathbf{C}$ $\mathbf{C} = \left(\sqrt{\mathbf{B}}\right)^{-1} \mathbf{A} \left(\sqrt{\mathbf{B}^T}\right)^{-1}$

- Disadvantages:
 - leakage effect of FFT subbands not taken care of
 - doesn't account for additive noise

Maximize Bit Rate

• Bit rate expression:

$$b_{DMT} = \sum_{i=1}^{N/2} \log_2 \left(1 + \frac{SNR_i}{\Gamma_i} \right)$$
 bits/symbol

i :subchannel index

SNR_i:SNR in the ith subchannel

 $\Gamma : \Gamma(P_e, C)$ -SNR gap for achieving Shannon channel capacity C - line code, function of basis function (modulation) and signal constellation

MGSNR (1)

- Maximize geometric SNR (MGSNR)
 - replace SNR with GSNR

$$GSNR \equiv \Gamma \left[\left(\prod_{i=1}^{\frac{N}{2}} 1 + \frac{SNR_i}{\Gamma} \right)^{\frac{2}{N}} - 1 \right]$$
$$\approx \left[\prod_{i=1}^{\frac{N}{2}} SNR_i \right]^{\frac{2}{N}}$$

• Assume: $\Gamma_{i} = \Gamma \qquad (\text{assume same } P_{e} \text{ for all subchannel s})$ $SNR_{i} = \frac{S_{x} |H_{i}|^{2}}{R_{n,i}} \quad (\text{assume flat input energy across subchannel s})$ $\Rightarrow b_{DMT} = \frac{N}{2} \log_{2} \left(1 + \frac{GSNR}{\Gamma}\right)$ Dept. of EEE, HKUST

MGSNR (2)

- Maximize bit rate becomes maximizing the GSNR
- Disadvantage: cannot achieve optimal solution (as shown in MBR)
 - too much assumptions and approximations in GSNR expression
 - does not include ISI power

MBR (1)

• Works with original b_{DMT} expression with

 $SNR_i = \frac{\text{signal power}}{\text{additive noise power} + \text{ISI power}}$

- SNR_i expression that includes ISI power
- assume $\Gamma_i = \Gamma$ only
- achieve near optimal solution for achievable bit rate

$$b_{DMT} = \sum_{i=1}^{N/2} \log_2 \left(1 + \frac{1}{\Gamma} \frac{\mathbf{h}^T \mathbf{A}_i \mathbf{h}}{\mathbf{h}^T \mathbf{B}_i \mathbf{h}} \right)$$

A : signal power inside window

 \mathbf{B} :signal power outside window + additive noise power

MBR (2)

- Disadvantages:
 - High BER (compared to our design)
 - Requires nonlinear optimization

Eigenfilter TEQ (1)

- Trade-off between additive noise and ISI power to allow more design freedom
- Able to get a global optimal using Rayleigh quotient

$$J = \frac{a(\text{ISI power}) + (1 - a)(\text{additive noise power})}{\text{signal power}}$$
$$= \frac{as_{x_{res}}^{2} + (1 - a)s_{q}^{2}}{s_{x_{des}}^{2}}$$
$$\Rightarrow J = \min_{\mathbf{v}} \frac{\mathbf{v}^{H} \mathbf{T} \mathbf{v}}{\mathbf{v}^{H} \mathbf{v}}$$

EIGFILT (2)

- Disadvantage:
 - high BER (compared to our design)
 - does not account for the bit rate

Can we do better on BER?

- ISI taken care of by the CP
- Minimize the channel noise \rightarrow minimize the BER
 - fixed ISI noise as a constraint
- Exact computation of BER not available analytically
 - Minimize a tight bound instead \rightarrow Chernoff bound
- Chernoff bound of *Q*-function

$$P_e \equiv \frac{2}{N} \sum_{i=1}^{N/2} Q\left(\sqrt{k_m SNIR_i}\right)$$
$$Q\left(\sqrt{k_m SNIR_i}\right) \le \exp\left(-\frac{k_m SNIR_i}{2}\right)$$

Chernoff TEQ design

$$SNIR_{i} = \frac{\boldsymbol{s}_{x}^{2}\mathbf{h}\mathbf{C}\mathbf{W}_{\Delta}\mathbf{C}^{H}\mathbf{h}^{H}}{\boldsymbol{s}_{x}^{2}\mathbf{h}\mathbf{C}\overline{\mathbf{W}}_{\Delta}\mathbf{C}^{H}\mathbf{h}^{H} + \mathbf{h}\mathbf{R}_{h}\mathbf{h}^{H}}$$
$$J = \min_{\mathbf{h}} \exp\left(-\frac{\boldsymbol{s}_{x}^{2}\mathbf{h}\mathbf{C}\mathbf{W}_{\Delta}\mathbf{C}^{H}\mathbf{h}^{H}}{2\left(\boldsymbol{s}_{x}^{2}\mathbf{h}\mathbf{C}\overline{\mathbf{W}}_{\Delta}\mathbf{C}^{H}\mathbf{h}^{H} + \mathbf{h}\mathbf{R}_{h}\mathbf{h}^{H}\right)}\right)$$
s.t. $\mathbf{h}\mathbf{C}\mathbf{W}_{\Delta}\mathbf{C}^{H}\mathbf{h}^{H} = \mathbf{m}\mathbf{c}\mathbf{c}^{H} = \mathbf{m}\mathbf{E}_{c}$

since
$$\overline{\mathbf{W}}_{\Delta} = \mathbf{I} - \mathbf{W}_{\Delta}$$

 $J = \min_{\mathbf{h}} \mathbf{h} (\mathbf{C}\mathbf{C}^{H} + \mathbf{S}_{x}^{-2}\mathbf{R})\mathbf{h}^{+}$
 $s.t. \mathbf{h}\mathbf{C}\mathbf{W}_{\Delta}\mathbf{C}^{+}\mathbf{h}^{+} = \mathbf{m}\mathbf{E}_{c}$
 $J = \min_{\mathbf{h}} \mathbf{h}\mathbf{P}\mathbf{h}^{H}$
 $s.t. \mathbf{h}\mathbf{Q}\mathbf{h}^{H} = \mathbf{m}\mathbf{E}_{c}$

Notations

 $\mathbf{h} \equiv [h(0) \ h(1) \ \dots \ h(L_e - 1)]$ $\mathbf{c} \equiv [c(0) \ c(1) \ \dots \ c(L_c - 1)]$ $\mathbf{C} = \begin{bmatrix} c(0) & c(1) & \dots & c(L_c - 1) & 0 & \dots & 0 \\ 0 & c(0) & c(1) & \dots & c(L_c - 1) & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & c(0) & c(1) & \dots & c(L_c - 1) \end{bmatrix}$ $\mathbf{W}_{\Delta} \equiv \begin{bmatrix} \mathbf{0}_{\Delta} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{L_{d}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0}_{L_{c}+L_{o}-L_{d}} - 1 - \Delta \end{bmatrix}$ Δ : delay L_e: Equalizer length L_c: Channel length L_{d} : Desired effective/shortened channel length

Comparison

- Chernoff (Fung & Kok, 2003)
 - minimize BER
- EIGFILT (Tkacenko & Vaidyanathan, 2002)
 - minimize ISI power/additive noise power
- MBR (Arslans, Evans & et. al., 2001) – maximize bit rate

Design Parameters

Input signal power	14 dBm
AWGN power	-110 dBm
Length of equalizer	16 – 45 taps
Desired length of effective	33/48
channel	
Delay of effective channel	10 (Chernoff and EIGFILT)
Channel	CSA loop 1, 2, 6
Channel length	512
Size of DFT	512
Sampling frequency	2.208 MHz
μ	0.5 – 0.95

Results - different TEQs (1)

Dept. of EEE, HKUST

Results - different TEQs (2)

Robustness - different channel lengths

Robustness - colored noise

Conclusion

- BER optimized TEQ design
- Better BER than EIGENFILT and MBR
- Robustness:
 - different channel length
 - colored noise
- Closed form expression?
 - Iterative solution possible
- Further investigation on the effect of μ
- Can we incorporate both objectives?
 - Maximize bit rate
 - Minimize BER

References (1)

- A. Peled and A. Ruiz, "Frequency Domain Data Transmission using Reduced Computational Complexity Algorithms", *IEEE ICASSP*, vol. 1, p. 964-967, Apr. 1980.
- P. P. Vaidyanathan and B. Vrcelj, "On Power Allocation for Generalized Cyclic-Prefix based Channel-Equalizers", *IEEE ISCAS*, vol. 1, p. I-1 I-4, 2002.
- D. D. Falconer and F. R. Magee, Jr., "Adaptive Channel Memory Truncation for Maximum Likelihood Sequence Estimation", *The Bell System Technical Journal*, vol. 52, p. 1551-1562, Nov. 1973.
- P. J. W. Melsa, C. Younce, and C. E. Rohrs, "Impulse Response Shortening for Discrete Multitone Transceivers", *IEEE Trans. on Communications*, vol. 44(12), p. 1662-1672, Dec. 1996.
- B. Wang, T. Adali, Q. Liu, and M. Vlajnic, "Generalized Channel Impulse Response Shortening for Discrete Multitone Transceivers", *Proc. Of the 33rd Asilomar Conference on Signals, Systems, and Computers*, vol. 1, p. 276-280, Oct. 1999.

References (2)

- N. Al-Dhahir and J. M. Cioffi, "Optimum Finite-Length Equalization for Multicarrier Transceivers", *IEEE Trans. on Communications*, vol. 44(1), p. 56-64, Jan. 1996.
- N. Al-Dhahir and J. M. Cioffi, "A Bandwidth-Optimized Reduced-Complexity Equalized Multicarrier Transceiver", *IEEE Trans. on Communications*, vol. 45(8), p. 948-956, Aug. 1997.
- B. Farhang-Boroujeny and M. Ding, "Design Methods for Time-Domain Equalizers in DMT Transceivers", *IEEE Trans. on Communications*, vol. 49(3), p. 554-562, Mar. 2001.
- G. Arslan, B. L. Evans, S. Kiaei, "Equalization for Discrete Multitone Transceivers to Maximize Bit Rate", *IEEE Trans. on Signal Processing*, vol. 49(12), p. 3123-3135, Dec. 2001.
- A. Tkacenko and P. P. Vaidyanathan, "A New Eigenfilter Based Method for Optimal Design Channel Shortening Equalizers", *IEEE ISCAS*, vol. 2, p. 504-507, 2002.

References (3)

- A. P. Iserte, A. I. Perez-Neira, D. P. Palomar, M. A. Lagunas, "Power Allocation Techniques for Joint Beamforming in OFDM-MIMO Channels", *11th European Signal Processing Conference*, Sept. 2002.
- J. Zhang and W. Ser, "Joint Impulse Response Shortening for DMT Transceivers", *Electronics Letters*, vol. 38(24), p. 1603-1604, Nov. 21, 2002.
- G. Arslan, B. Lu, and B. L. Evans, *Matlab DMTTEQ Toolbox*, http://signal.ece.utexas.edu/~arslan/dmtteq/dmtteq.html