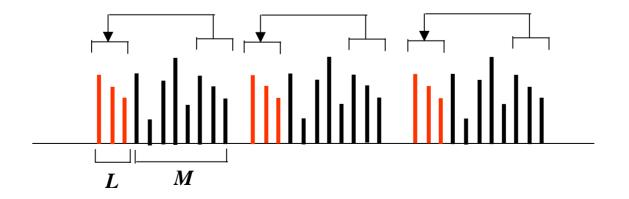
"Imperfect" Equalization and Blind Channel Estimation using HOS

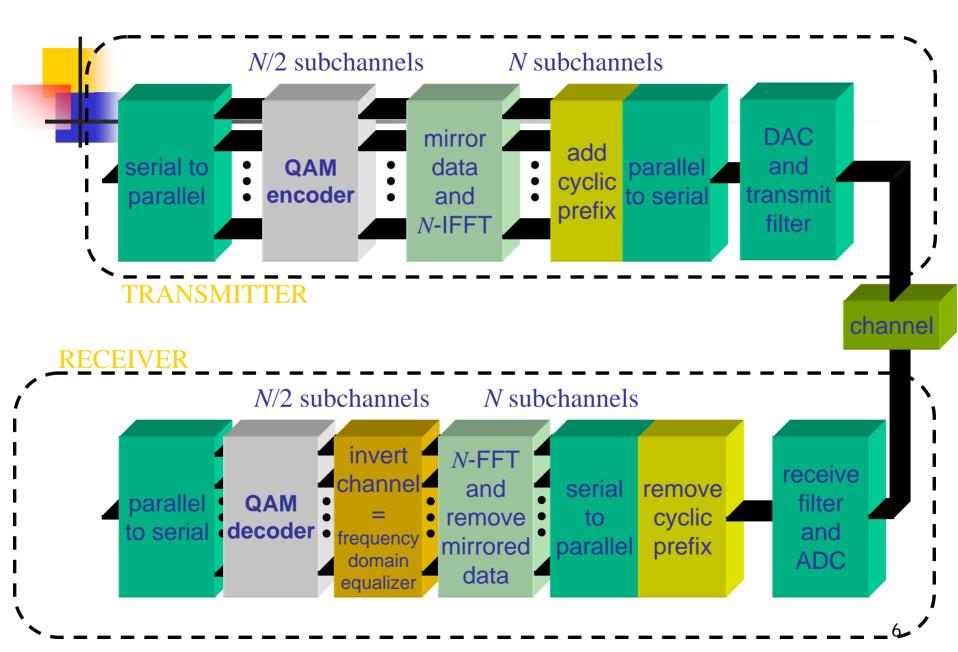
Carrson C. Fung and Chi-Wah Kok <u>c.fung@ieee.org</u> <u>http://www.ee.ust.hk/~cfung</u>

Dept. of Electrical and Electronic Engineering Hong Kong University of Science & Technology

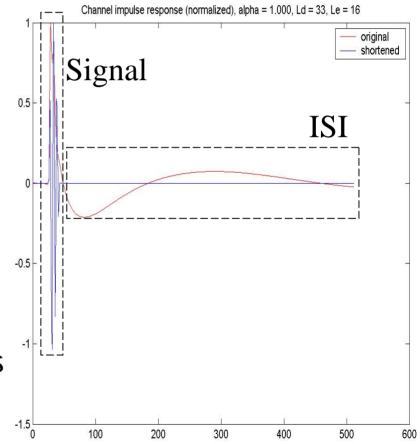

Part I: "Imperfect" Equalization and Channel Shortening

"Imperfect" Equalization and Channel Shortening

- Used in DMT-based systems such as xDSL
 - Imperfect because ISI is allowed to corrupt cyclic prefix (CP)
- Motivation
 - Simple equalization
 - But require "long" CP if channel IR is long
- TEQ
 - Shorten channel to maximize bit rate
 - BUT bit error rate should be taken into account too


Cyclic Prefix (1)

- Cyclic prefix (CP) is used to minimize ISI and ICI
- Divide input stream into blocks, say of length M
- L symbols at the end of each block is copied to form the CP – periodic sequence
- ISI only affects the L samples in each block


Cyclic Prefix (2)

- Advantages:
 - C does not have to be minimum phase
 - robust toward channel noise amplification
 - Easy to implement
 - Only need a simple frequency-domain equalizer to cancel magnitude and phase distortion in the remaining M samples
- Disadvantage:
 - Decrease transmission efficiency by M/(M+L)

What is Time-Domain Equalizer?

- CP length ≥ L_c +1
 L_c shortened → CP length shortened → higher throughput
- Shorten channel with TEQ
 - window out the undesired portion of the channel
- Some design objectives
 - Minimize ISI power
 - Maximize bit rate
 - Minimize BER

Past Work

various TEQ design approach

- MMSE [Falconer & Magee, 1973]
- Maximize shortening SNR (MSSNR)
 - [Melsa & et. al., 1996]
 - [Wang & et. al., 1999]
- Maximize Bit Rate
 - MGSNR [AI-Dhahir & Cioffi, 1967, Farhang-Boroujeny & Ding, 2001]
 - MBR [Arslan, Evans and et. al.,2001]
- ISI power/AWGN power
 - ISI only [Schur & Speidel, 2001]
 - ISI + AWGN [Tkacenko & Vaidyanathan, 2002]

Maximize Bit Rate

Bit rate expression:

$$b_{DMT} = \sum_{i=1}^{N/2} \log_2 \left(1 + \frac{SNR_i}{\Gamma_i} \right)$$
 bits/symbol

i :subchannel index

 SNR_i : SNR in the ith subchannel

 $\Gamma : \Gamma(P_e, C)$ -SNR gap for achieving Shannon channel capacity C - line code, function of basis function (modulation) and signal constellation

Works with original b_{DMT} expression with

$$SNR_i = \frac{\text{signal power}}{\text{additive noise power} + \text{ISI power}}$$

- SNR_i expression that includes ISI power
- assume $\Gamma_i = \Gamma$ only
- achieve near optimal solution for achievable bit rate $b_{DMT} = \sum_{i=1}^{N/2} \log_2 \left(1 + \frac{1}{\Gamma} \frac{\mathbf{h}^T \mathbf{A}_i \mathbf{h}}{\mathbf{h}^T \mathbf{B}_i \mathbf{h}} \right)$

A : signal power inside window

 \mathbf{B} : signal power outside window + additive noise power

Disadvantages:

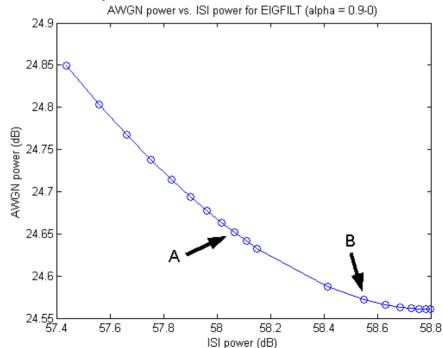
- High BER (compared to our design)
- Requires nonlinear optimization

Eigenfilter TEQ (1)

- Trade-off between additive noise and ISI power to allow more design freedom
- Able to get a global optimal using Rayleigh quotient

 $J = \frac{\alpha (\text{ISI power}) + (1 - \alpha) (\text{additive noise power})}{\text{signal power}}$

$$= \frac{\alpha \sigma_{x_{res}}^{2} + (1 - \alpha) \sigma_{q}^{2}}{\sigma_{x_{des}}^{2}}$$
$$\Rightarrow J = \min_{\mathbf{v}} \frac{\mathbf{v}^{H} \mathbf{T} \mathbf{v}}{\mathbf{v}^{H} \mathbf{v}}$$



Disadvantage:

- high BER (compared to our design)
- does not account for the bit rate

Can we do better on BER?

- ISI taken care of by the CP
- Minimize the channel noise \rightarrow minimize the BER
 - fixed ISI noise power as a constraint

BER bound

- Exact computation of BER not available analytically
 - Minimize a tight bound instead → Chernoff bound
- Chernoff bound of *Q*-function

$$P_{e} \equiv \frac{2}{N} \sum_{i=1}^{N/2} Q\left(\sqrt{k_{m} SNIR_{i}}\right)$$
$$Q\left(\sqrt{k_{m} SNIR_{i}}\right) \leq \exp\left(-\frac{k_{m} SNIR_{i}}{2}\right)$$

Notations

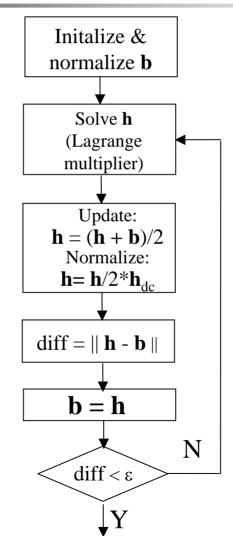
 $\mathbf{h} \equiv \begin{bmatrix} h(0) \ h(1) \ \dots \ h(L_e - 1) \end{bmatrix}$ $\mathbf{c} \equiv \begin{bmatrix} c(0) \ c(1) \ \dots \ c(L_c - 1) \end{bmatrix}$ $\mathbf{C} \equiv \begin{bmatrix} c(0) \ c(1) \ \dots \ c(L_c - 1) \ 0 \ \dots \ 0 \\ 0 \ c(0) \ c(1) \ \dots \ c(L_c - 1) \ \ddots \ \vdots \\ \vdots \ \ddots \ \ddots \ \ddots \ \ddots \ \ddots \ 0 \\ 0 \ \dots \ 0 \ c(0) \ c(1) \ \dots \ c(L_c - 1) \end{bmatrix}$ $\mathbf{W}_{\Delta} \equiv \begin{bmatrix} \mathbf{0}_{\Delta} \ \mathbf{0} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{I}_{L_d} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0}_{L_c + L_e - L_d - 1 - \Delta} \end{bmatrix}$

 Δ : delay

- L_e:Equalizer length
- L_c:Channel length
- L_d: Desired effective/shortened channel length

Chernoff TEQ design

$$SNIR_{i} = \frac{\sigma_{x}^{2}\mathbf{h}\mathbf{C}\mathbf{W}_{\Delta}\mathbf{C}^{H}\mathbf{h}^{H}}{\sigma_{x}^{2}\mathbf{h}\mathbf{C}\overline{\mathbf{W}}_{\Delta}\mathbf{C}^{H}\mathbf{h}^{H} + \mathbf{h}\mathbf{R}_{\eta}\mathbf{h}^{H}}$$
$$J = \min_{\mathbf{h}} \exp\left(-\frac{\sigma_{x}^{2}\mathbf{h}\mathbf{C}\mathbf{W}_{\Delta}\mathbf{C}^{H}\mathbf{h}^{H}}{2\left(\sigma_{x}^{2}\mathbf{h}\mathbf{C}\overline{\mathbf{W}}_{\Delta}\mathbf{C}^{H}\mathbf{h}^{H} + \mathbf{h}\mathbf{R}_{\eta}\mathbf{h}^{H}\right)}\right)$$
s.t. $\mathbf{h}\mathbf{C}\mathbf{W}_{\Delta}\mathbf{C}^{H}\mathbf{h}^{H} = \mu\mathbf{c}\mathbf{c}^{H} = \mu E_{c}$


since
$$\overline{\mathbf{W}}_{\Delta} = \mathbf{I} - \mathbf{W}_{\Delta}$$

 $J = \min_{\mathbf{h}} \mathbf{h} (\mathbf{C}\mathbf{C}^{H} + \sigma_{x}^{-2}\mathbf{R})\mathbf{h}^{+}$
 $s.t. \mathbf{h}\mathbf{C}\mathbf{W}_{\Delta}\mathbf{C}^{+}\mathbf{h}^{+} = \mu E_{c}$
 $J = \min_{\mathbf{h}} \mathbf{h}\mathbf{P}\mathbf{h}^{H}$
 $s.t. \mathbf{h}\mathbf{Q}\mathbf{h}^{H} = \mu E_{c}$

Solutions

- Nonlinear Optimization (*fmincon* in MATLAB)
- Iterative technique
 - linearize the constraint hQh^H
 - hQh^H ==> bQh^H ==> Kh^H ==> constraint is now linear
 - **b** = $\mathbf{h}^{(k-1)}$, *k* is the current iteration

$$L(h,\lambda) = \mathbf{h}\mathbf{P}\mathbf{h}^{H} + \lambda(\mathbf{K}\mathbf{h} - \mu E_{c})$$
$$\begin{bmatrix} 2\mathbf{P} & \mathbf{K}^{H} \\ \mathbf{K} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{h}^{H} \\ \lambda^{H} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mu E_{c} \end{bmatrix}$$

Comparison

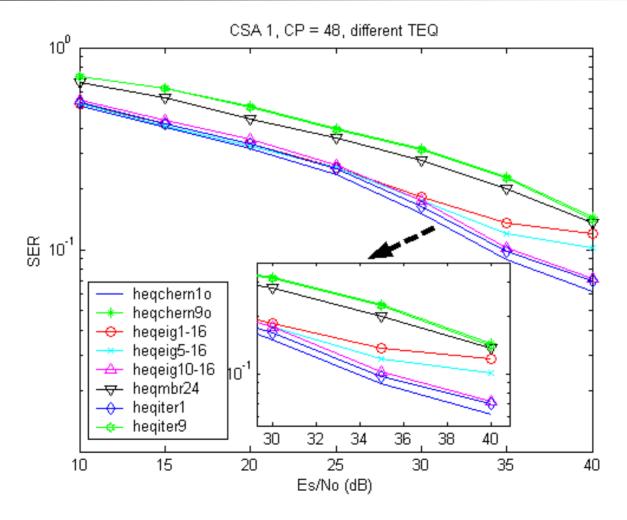
- Chernoff (Fung & Kok, 2003)
 - minimize BER
- EIGFILT (Tkacenko & Vaidyanathan, 2002)
 - minimize ISI power/additive noise power
- MBR (Arslans, Evans & et. al., 2001)
 - maximize bit rate

Design Objective Comparison

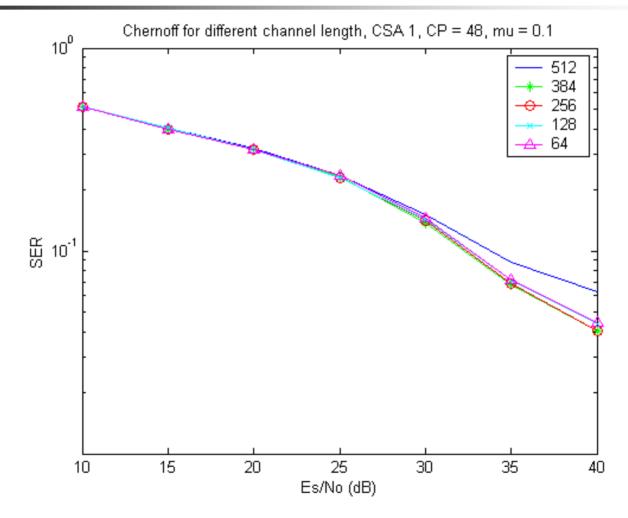
TEQ	Bit rate	ISI power	AWGN power
Chernoff		fixed ISI power	minimize AWGN power
EIGFILT		tradeoff AWGN power	tradeoff ISI power
MBR	optimal		

TEQ Design Parameters

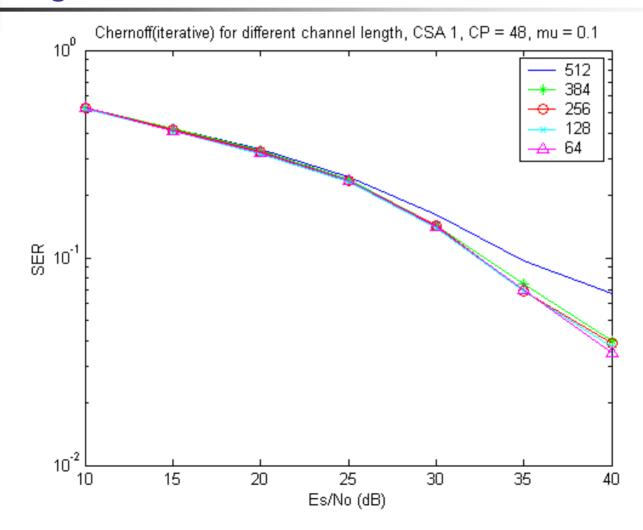
	Chernoff	EIGFILT	MBR
Input signal power , σ _x ² (dBm)	14	14	23
AWGN power, σ_{η}^{2} (dBm)	-110	-110	-140
Equalizer length, L_e (samples)	16	16	16
Desired EIR length, <i>L_d</i> (samples)	33	33	33
Delay, Δ (samples)	10	10	24
Carrier Service Loop (CSA), $L_c = 512$	1	1	1
DFT size	512	512	512
Sampling frequency, fs (MHz)	2.208	2.208	2.208
μ	0.1-0.95		
α		0.1-1.0	

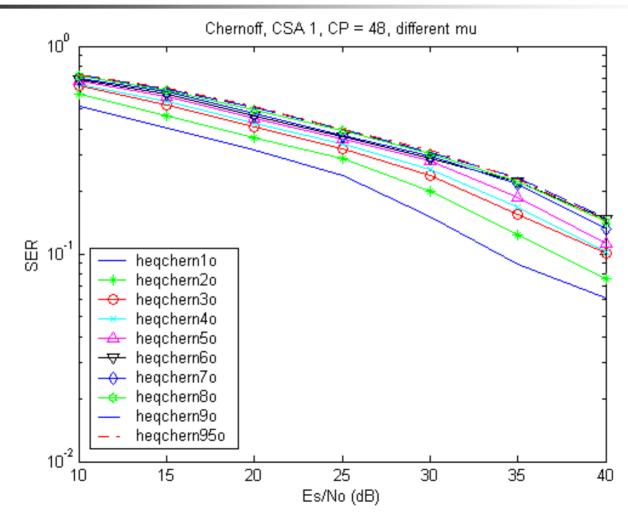

Simulation Parameters

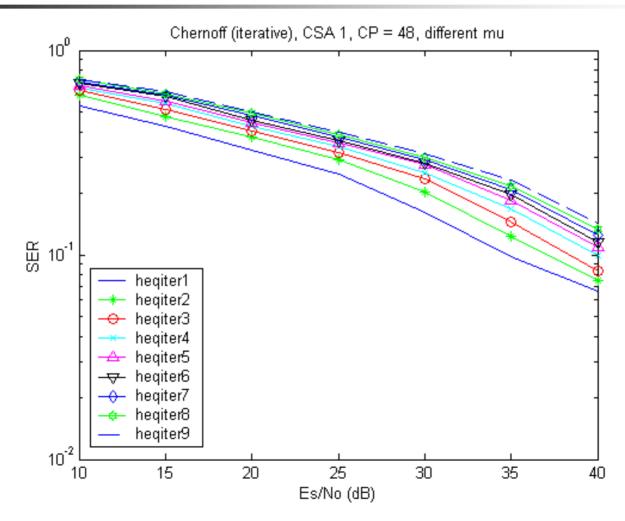
- CP = 48
- 16 QAM modulation
- 1 tap FEQ/subcarrier (zero-forcing)
- CSA 1, 2, 6 (DMT Toolbox)

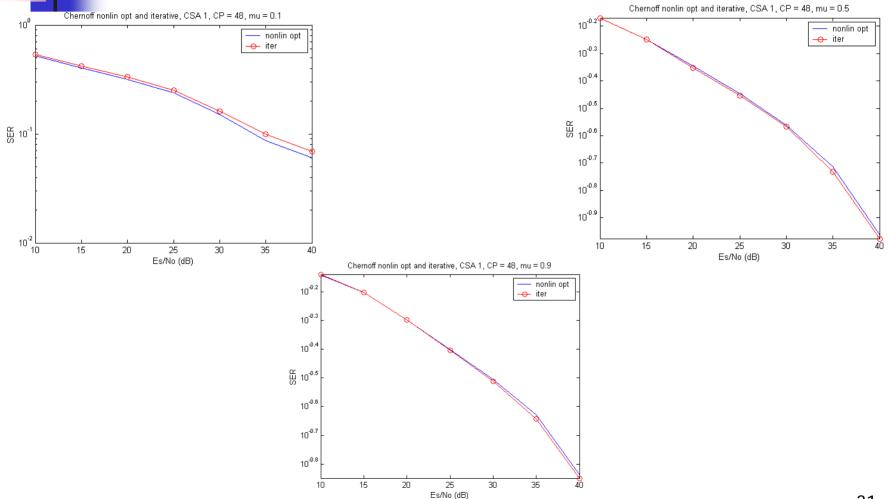

TEQ Naming Convention

Name	Туре	μ	α
heqchern10	Chernoff (nonlinear opt)	0.1	
heqchern90	Chernoff (nonlinear opt)	0.9	
heqiter1	Chernoff (iterative)	0.1	
heqiter9	Chernoff (iterative)	0.9	
heqeig1-16	EIGFILT		0.1
heqeig5-16	EIGFILT		0.9
heqeig10-16	EIGFILT		1.0
heqmbr24	MBR		


Results: different TEQs – high SNR


Results: Robustness against different channel lengths – Chernoff (nonlinear opt)


Results: Robustness against different channel lengths – Chernoff (iterative)


Results: Different μ (nonlinear opt)

Results: Different μ (iterative)

Results: nonlinear opt vs. iterative

Conclusion

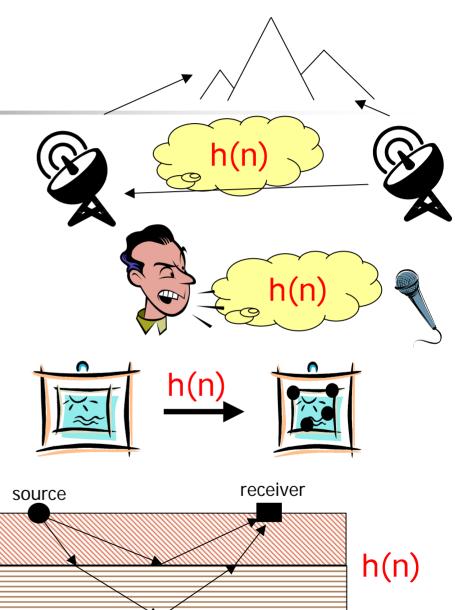
- BER optimized TEQ design
 - 2 solutions
- Better BER than EIGENFILT and MBR
- Robustness:
 - different channel length
- Future work
 - Effects of delay and window size

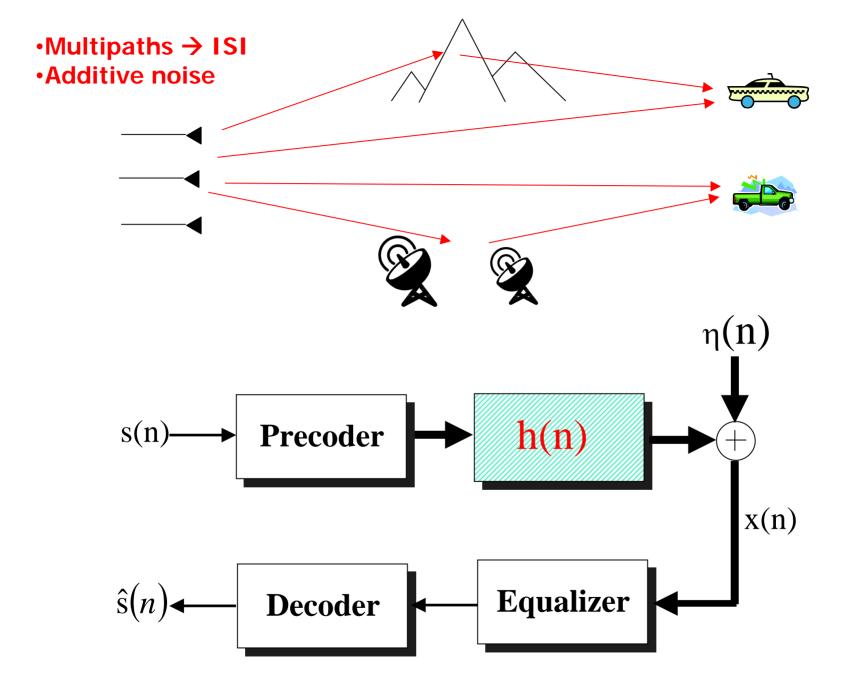
Publications

- C.C. Fung and C.-W. Kok, "Bit Error Rate Optimized Time-Domain Equalizers for DMT Systems", *Proc. of the 14th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications,* Sept. 2003.
- C.C. Fung and C.-W. Kok, "Bit Error Rate Optimized Time-Domain Equalizers for DMT Systems", *submitted to the IEEE Trans. on Communications,* Nov. 2003.

Part II: Blind Estimation Using HOS

(joint work with Prof. Zhi Ding at UC Davis)


Problem and Objective

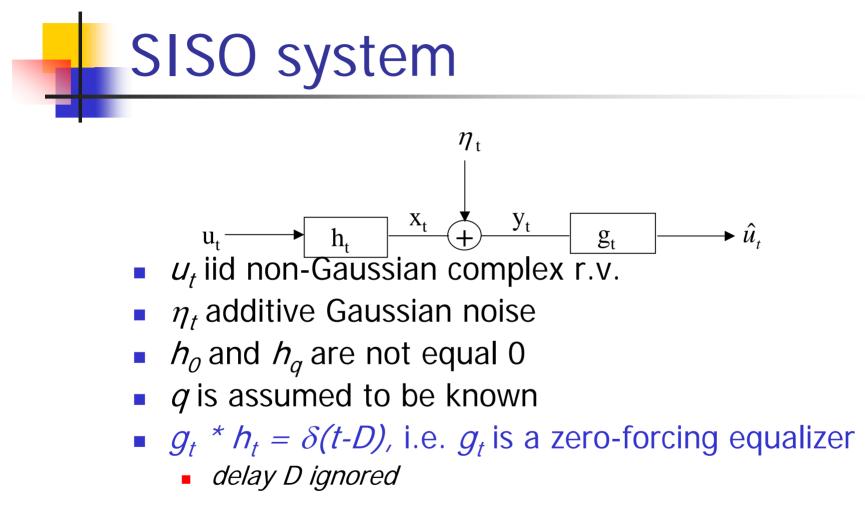

- Knowns
 - Output signal
 - Statistics of input signal
- Unknowns
 - Input signal
 - System/channel response
 - Additive noise
- Goals:
 - Estimate unknown system/channel coefficients
 - Estimate channel length
 - Equalize effect of channel and additive noise

Applications

Communications

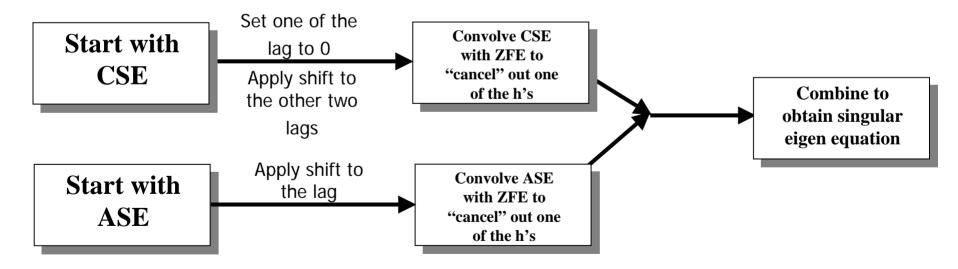
- Speech recognition and reverberation cancellation
- Image restoration
- Seismology

Some Blind Estimation Techniques


- Maximum Likelihood
- Adaptive
 - Constant-Modulus Algorithm
- Second-order statistics (SOS)
 - Cyclostationary signal (e.g. Tong, Gardner)
- Higher-order statistics (HOS)
 - Fourth-order cumulant (e.g. GM method, Tugnait, Ding)
- Linear prediction method

Advantages & Disadvantages of using 4th order Cumulant

- Advantages:
 - Good low SNR estimator when noise is Gaussian distributed
 - Can identify "singular" channels (common zeros)
- Disadvantages:
 - Requires more data to obtain good estimates compared to SOS based techniques


Our Formulations

- Formulate the blind channel estimation problem as a singular matrix pencil problem using cumulant slice
- Will show:
 - Eigenvalues contain the magnitude of the channel coefficients
 - Eigenvectors contain the zero-forcing equalizer (ZFE) coefficients

Basic Idea for Cumulant Slice

Autocorrelation System Equation (ASE) $r(m) = \gamma_{1,1} \sum_{k=0}^{q} h_k h_{k+m}^*$ and $s(m) E[u_t^2] \sum_{k=0}^{q} h_k h_{k+m}$ Cumulant System Equation (CSE) : $c(l,m,n) = \mu_{2,2} \sum_{t=0}^{q} h_t h_{t+l}^* h_{t+m}^* h_{t+n}$ Definition : $c(l,m,n) = d(l,m,n) - r(l)r(m-n) - r(m)r(l-n) - s(n)s^*(m-l)$

Conclusion

- Blind channel estimation problem formulated as an generalized eigen problem
 - eigenvalue = magnitude of channel coefficients
 - eigenvector = zero-forcing equalizer
- Channel coefficients can be estimated by using the eigenvector
- Channel order may be estimated by noting number of non-zero eigenvalues
- Future Work
 - MIMO
 - Frequency Estimation
 - DOA

References – TEQ (1)

- A. Peled and A. Ruiz, "Frequency Domain Data Transmission using Reduced Computational Complexity Algorithms", *IEEE ICASSP*, vol. 1, p. 964-967, Apr. 1980.
- P. P. Vaidyanathan and B. Vrcelj, "On Power Allocation for Generalized Cyclic-Prefix based Channel-Equalizers", *IEEE ISCAS*, vol. 1, p. I-1 – I-4, 2002.
- D. D. Falconer and F. R. Magee, Jr., "Adaptive Channel Memory Truncation for Maximum Likelihood Sequence Estimation", *The Bell System Technical Journal*, vol. 52, p. 1551-1562, Nov. 1973.
- P. J. W. Melsa, C. Younce, and C. E. Rohrs, "Impulse Response Shortening for Discrete Multitone Transceivers", *IEEE Trans. on Communications*, vol. 44(12), p. 1662-1672, Dec. 1996.
- B. Wang, T. Adali, Q. Liu, and M. Vlajnic, "Generalized Channel Impulse Response Shortening for Discrete Multitone Transceivers", *Proc. Of the 33rd Asilomar Conference on Signals, Systems, and Computers*, vol. 1, p. 276-280, Oct. 1999.

References – TEQ (2)

- N. Al-Dhahir and J. M. Cioffi, "Optimum Finite-Length Equalization for Multicarrier Transceivers", *IEEE Trans. on Communications*, vol. 44(1), p. 56-64, Jan. 1996.
- N. Al-Dhahir and J. M. Cioffi, "A Bandwidth-Optimized Reduced-Complexity Equalized Multicarrier Transceiver", *IEEE Trans. on Communications*, vol. 45(8), p. 948-956, Aug. 1997.
- B. Farhang-Boroujeny and M. Ding, "Design Methods for Time-Domain Equalizers in DMT Transceivers", *IEEE Trans. on Communications*, vol. 49(3), p. 554-562, Mar. 2001.
- G. Arslan, B. L. Evans, S. Kiaei, "Equalization for Discrete Multitone Transceivers to Maximize Bit Rate", *IEEE Trans. on Signal Processing*, vol. 49(12), p. 3123-3135, Dec. 2001.
- A. Tkacenko and P. P. Vaidyanathan, "A New Eigenfilter Based Method for Optimal Design Channel Shortening Equalizers", *IEEE ISCAS*, vol. 2, p. 504-507, 2002.

References – TEQ (3)

- A. P. Iserte, A. I. Perez-Neira, D. P. Palomar, M. A. Lagunas, "Power Allocation Techniques for Joint Beamforming in OFDM-MIMO Channels", *11th European Signal Processing Conference*, Sept. 2002.
- J. Zhang and W. Ser, "Joint Impulse Response Shortening for DMT Transceivers", *Electronics Letters*, vol. 38(24), p. 1603-1604, Nov. 21, 2002.
- G. Arslan, B. Lu, and B. L. Evans, *Matlab DMTTEQ Toolbox*, http://signal.ece.utexas.edu/~arslan/dmtteq/dmtteq. html

References – Cumulant

- B. Porat and B. Friedlander, "FIR System Identification Using Fourth-Order Cumulants with Application to Channel Equalization", *IEEE Trans. on Automatic Control*, vol. 38(9), Sept. 1993.
- G.B. Giannakis and J.M. Mendel, "Identification of Nonminimum Phase Systems Using Higher Order Statistics", IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 37(3), Mar. 1989.
- J.M. Mendel, "Tutorial on Higher-Order Statistics (Spectra) in Signal Processing and System Theory: Theoretical Results and Some Applications", *Proc. of the IEEE*, vol. 79(3), Mar. 1991.
- Z. Ding and J. Liang, "A Cumulant Matrix Subspace Algorithm for Blind Single FIR Channel Identification", *IEEE Trans. on Signal Processing*, vol. 49(2), Feb. 2001.
- A. Swami and J.M. Mendel, "Cumulant-Based Approach to the Harmonic Retrieval and Related Problems", *IEEE Trans. on Signal Processing*, vol. 39(5), May 1991.
- B. Kagstrom. Singular Matrix Pencils (Section 8.7). In Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors, *Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide*, p. 260-277, SIAM, Philadelphia, 2000.