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Part I: “Imperfect” 
Equalization and 

Channel Shortening
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“Imperfect” Equalization and 
Channel Shortening

Used in DMT-based systems such as xDSL
Imperfect because ISI is allowed to corrupt cyclic 
prefix (CP)

Motivation
Simple equalization
But require “long” CP if channel IR is long

TEQ
Shorten channel to maximize bit rate
BUT bit error rate should be taken into account 
too
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Cyclic Prefix (1)
Cyclic prefix (CP) is used to minimize ISI and ICI
Divide input stream into blocks, say of length M 
L symbols at the end of each block is copied to form 
the CP – periodic sequence
ISI only affects the L samples in each block

ML
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Cyclic Prefix (2)
Advantages:

C does not have to be minimum phase
robust toward channel noise amplification
Easy to implement
Only need a simple frequency-domain equalizer to 
cancel magnitude and phase distortion in the 
remaining M samples

Disadvantage:
Decrease transmission efficiency by M/(M+L)
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What is Time-Domain 
Equalizer?

CP length ≥ Lc +1
Lc shortened CP 
length shortened 
higher throughput
Shorten channel with 
TEQ

window out the 
undesired portion of the 
channel

Some design objectives
Minimize ISI power
Maximize bit rate
Minimize BER

ISI

Signal
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Past Work
various TEQ design approach

MMSE [Falconer & Magee, 1973]
Maximize shortening SNR (MSSNR)

[Melsa & et. al., 1996]
[Wang & et. al., 1999]

Maximize Bit Rate
MGSNR [Al-Dhahir & Cioffi, 1967, Farhang-Boroujeny & Ding, 
2001]
MBR [Arslan, Evans and et. al.,2001]

ISI power/AWGN power
ISI only [Schur & Speidel, 2001]
ISI + AWGN [Tkacenko & Vaidyanathan, 2002]
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Maximize Bit Rate

Bit rate expression:
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MBR (1)
Works with original bDMT expression with

SNRi expression that includes ISI power
assume Γi = Γ only
achieve near optimal solution for achievable bit 
rate
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MBR (2)

Disadvantages:
High BER (compared to our design)
Requires nonlinear optimization
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Eigenfilter TEQ (1)
Trade-off between additive noise and ISI 
power to allow more design freedom
Able to get a global optimal using Rayleigh
quotient
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EIGFILT (2)

Disadvantage:
high BER (compared to our design)
does not account for the bit rate
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Can we do better on BER?
ISI taken care of by the CP
Minimize the channel noise minimize the BER

fixed ISI noise power as a constraint
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BER bound
Exact computation of BER not available 
analytically

Minimize a tight bound instead Chernoff bound

Chernoff bound of Q-function

( )

( ) ⎟
⎠
⎞

⎜
⎝
⎛−≤

≡ ∑
=

2
exp                       

2 2

1

im
im

N

i
ime

SNIRkSNIRkQ

SNIRkQ
N

P



17

Notations
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Chernoff TEQ design
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Solutions
Nonlinear Optimization (fmincon in MATLAB)
Iterative technique

linearize the constraint hQhH

hQhH ==> bQhH ==> KhH ==> constraint is 
now linear
b = h(k-1), k is the current iteration
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Iterative Algorithm
Initalize & 
normalize b

Solve h 
(Lagrange 
multiplier)

diff < ε

b = h

Y

Update:
h = (h + b)/2

Normalize:
h= h/2*hdc

diff = || h - b || 

N
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Comparison

Chernoff (Fung & Kok, 2003)
minimize BER

EIGFILT (Tkacenko & Vaidyanathan, 
2002)

minimize ISI power/additive noise power

MBR (Arslans, Evans & et. al., 2001)
maximize bit rate
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Design Objective Comparison

 TEQ Bit rate ISI power AWGN 
power 

Chernoff -- fixed ISI power minimize AWGN 
power 

EIGFILT -- tradeoff AWGN 
power tradeoff ISI power

MBR optimal -- -- 
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TEQ Design Parameters
  Chernoff EIGFILT MBR 

Input signal power, σx
2 

(dBm) 14 14 23 

AWGN power, ση
2 (dBm) -110 -110 -140 

Equalizer length, Le 
(samples) 16 16 16 

Desired EIR length, Ld 
(samples) 33 33 33 

Delay, ∆ (samples) 10 10 24 
Carrier Service Loop 

(CSA), Lc = 512 1 1 1 

DFT size 512 512 512 
Sampling frequency, fs 

(MHz) 2.208 2.208 2.208 

µ 0.1-0.95 -- -- 

α -- 0.1-1.0 -- 
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Simulation Parameters

CP = 48
16 QAM modulation
1 tap FEQ/subcarrier (zero-forcing)
CSA 1, 2, 6 (DMT Toolbox)
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TEQ Naming Convention

 Name Type µ α 

heqchern1o Chernoff (nonlinear opt) 0.1 -- 

heqchern9o Chernoff (nonlinear opt) 0.9 -- 

heqiter1 Chernoff (iterative) 0.1 -- 

heqiter9 Chernoff (iterative) 0.9 -- 

heqeig1-16 EIGFILT -- 0.1 

heqeig5-16 EIGFILT -- 0.9 

heqeig10-16 EIGFILT -- 1.0 

heqmbr24 MBR -- -- 
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Results: different TEQs – high SNR
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Results: Robustness against different channel 
lengths – Chernoff (nonlinear opt)
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Results: Robustness against different channel 
lengths – Chernoff (iterative)
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Results: Different µ (nonlinear opt)
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Results: Different µ (iterative)
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Results: nonlinear opt vs. iterative
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Conclusion

BER optimized TEQ design
2 solutions

Better BER than EIGENFILT and MBR
Robustness:

different channel length

Future work
Effects of delay and window size
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Publications
C.C. Fung and C.-W. Kok, “Bit Error Rate Optimized 
Time-Domain Equalizers for DMT Systems”, Proc. of 
the 14th IEEE International Symposium on Personal, 
Indoor and Mobile Radio Communications, Sept. 
2003.
C.C. Fung and C.-W. Kok, “Bit Error Rate Optimized 
Time-Domain Equalizers for DMT Systems”, 
submitted to the IEEE Trans. on Communications, 
Nov. 2003.
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Part II: Blind 
Estimation Using 

HOS
(joint work with Prof. Zhi Ding at UC Davis)
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Problem and Objective
Knowns

Output signal
Statistics of input signal

Unknowns
Input signal
System/channel response
Additive noise

Goals:
Estimate unknown system/channel coefficients
Estimate channel length
Equalize effect of channel and additive noise
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h(n)

h(n)

Applications
Communications

Speech recognition 
and reverberation 
cancellation

Image restoration

Seismology

h(n)

source receiver

h(n)



•Multipaths ISI
•Additive noise

s(n)

η(n)

h(n)

( )nŝ

x(n)

EqualizerDecoder

Precoder
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Some Blind Estimation 
Techniques

Maximum Likelihood
Adaptive

Constant-Modulus Algorithm
Second-order statistics (SOS)

Cyclostationary signal (e.g. Tong, Gardner)
Higher-order statistics (HOS)

Fourth-order cumulant (e.g. GM method, Tugnait, 
Ding)

Linear prediction method
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Advantages & Disadvantages of 
using 4th order Cumulant

Advantages:
Good low SNR estimator when noise is 
Gaussian distributed
Can identify “singular” channels (common 
zeros)

Disadvantages:
Requires more data to obtain good 
estimates compared to SOS based 
techniques
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Our Formulations
Formulate the blind channel estimation 
problem as a singular matrix pencil 
problem using cumulant slice
Will show:

Eigenvalues contain the magnitude of the 
channel coefficients
Eigenvectors contain the zero-forcing 
equalizer (ZFE) coefficients
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SISO system

ut iid non-Gaussian complex r.v.
ηt additive Gaussian noise
h0 and hq are not equal 0
q is assumed to be known
gt * ht = δ(t-D), i.e. gt is a zero-forcing equalizer

delay D ignored

+

η t

ytht gtut
xt

tû
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Basic Idea for Cumulant Slice
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Conclusion
Blind channel estimation problem formulated as an 
generalized eigen problem

eigenvalue = magnitude of channel coefficients
eigenvector = zero-forcing equalizer

Channel coefficients can be estimated by using the 
eigenvector
Channel order may be estimated by noting number of 
non-zero eigenvalues
Future Work

MIMO
Frequency Estimation
DOA
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