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Who Am I Professionally?
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Traditional Cellular Network
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C-RAN network

C-RAN = Cloud Radio Access Network

User Transmission

Leakage Interference



Joint Transmission-Coordinated 
Multipoint (JT-CoMP)
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C-RAN network

Physical networks



JT-CoMP
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Graph Signal Processing (GSP)
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θ

For regular signals

For information networks

C-RAN network

Physical networks



What is a Graph?

 Collection of vertices and edges
 A set of nodes and the relationships that connect them
 G(V,E)

 Represents entities as nodes
 And how these entities relates to the world as 

relationship
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Graph Types
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DirectedUndirected

Cyclic Bipartite



Misconceptions about Big Data (Data 
Science)
 It’s only multimedia
 It means you need to deal with lots of data

 5 V’s: volume (curse of dimensionality), velocity, variety 
(data and knowledge fusion), veracity (statistics 101), value

 It’s the same as machine and deep learning (AI)
 Domain knowledge
 Data and knowledge fusion/cross-space fusion
 Data mining
 Machine and deep learning
 Ingenuity about which model to use for data (science & art)
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Danger in Big Data

 Danger in using data science approach (WMD) [O2016]
 Opacity, scale, damage, lack of feedback (p.109)

 Example:  university ranking
 Algorithm used lacks transparency
 Affects many applicants
 Overemphasis on alumni donation, SAT scores, student-teacher ratios, acceptance rates, 

fund raising
 E.g. Colleges game the system by increasing fund raising  campus improvement 

student acceptance increased  ranking increased
 Tuition amount not in algorithm and this can drive away good students

 Good example: FICO (Fair, Issac, and Co.)
 Founded in 1956 to provide credit score
 Evaluate risk that an individual will default on a loan

 Only looks at the borrower’s finances:  debt loan, bill-paying record
 Color-blind 
 Transparent and always updated based on your action
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C. O’Neil, Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy, Crown Publishing, New 
York, 2016.



Which aspects of data science do we deal 
with (so far)?
 Volume and velocity

 Data collected from everywhere
 Difficult/impossible to perform centralized processing

  Distributed algorithm

 Veracity
 Cross-layer design

 Variety
 Data fusion not enough

  Knowledge fusion is more appropriate

 Value
 If no value, why would we do it?
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Which aspects of data science do we deal 
with (so far)?
 Applications
 Communications

 Exploiting cloud AND edge/Fog computing resources
  Graph model + distributed consensus algorithm

 Predictive/preemptive analysis of communications network  
performance
  Graph model + statistical data model + machine learning + 

fusion

 Autonomous vehicles (land/area/sea)
 Data association and object tracking (track fusion)

  Graph model + distributed consensus algorithm
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Why Signal Processing Matters

 Data science is the study of the generalizable extraction 
of knowledge from data, yet the key word is science. It 
incorporates varying elements and builds on techniques 
and theories from many fields, including signal 
processing, mathematics (optimization), probability 
models, machine learning, deep learning, computer 
programming, data engineering, pattern recognition, 
visualization, uncertainty modeling, data warehousing 
and high performance computing with the goal of 
extracting meaning from data and creating data products. 
Data Science is not restricted to only big data, although 
the fact that data is scaling up makes big data an 
important aspect of data science.
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T. Singh, “Why data scientists are crucial for AI transformation,” https://www.forbes.com/sites/cognitiveworld/2018/09/13/why-
data-scientists-are-crucial-for-ai-transformation/amp/, Sep. 13, 2018.

http://en.wikipedia.org/wiki/Knowledge
http://en.wikipedia.org/wiki/Data
https://www.forbes.com/sites/cognitiveworld/2018/09/13/why-data-scientists-are-crucial-for-ai-transformation/amp/


Why Graphs?

 Human cognition makes the 
strong assumption that the 
world is composed of objects 
and relations
 A lot of things requires 

relationship to describe
 Training deep learning models 

with unstructured data fails to 
capture relationship
 Graph network [B2018]

 Surprisingly, hard to capture 
relationships even relational 
database 
 Use graph database instead
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P.W. Battaglia et al., “Relational inductive biases, deep 
learning, and graph network,” arXiv:1806.01261, Oct. 2018.



GDSP Basics:  Delay
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GSP Basics

 GSP in A equivalent to z-1 in DSP
 A: adjacency matrix
 Describes relationship between nodes
 [A]ij = wij

 Models directed graph

 A symmetric when wij = wji
 Modes undirected graph



 L = D-A is called the Laplacian
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GSP Basics: Shift Invariance and Filtering
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DSP GSP
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A. Sandryhaila and J.M.F. Moura, ``Discrete signal processing on graphs,'' IEEE Trans. on Signal Processing, vol. 61(7), pp. 1644-
1656, Apr. 2013.



DSP Basics: Fourier Basis for LTI Systems
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Graph Fourier Transform Basis
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GSP Fourier Transform
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Filtering Graph Signals
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Application: Image Segmentation 
(Clustering)
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pn pm

pk

Normalized distance between the nth 
and mth pixel

J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 
22(8), pp. 888-905, Aug. 2000.



Image Segmentation (Clustering)
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Applications: Customer Behavior 
Prediction
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Determine whether or not existing customers will stop service with a cellular provider

Fraction of time the nth customer 
called and talked to the mth customer
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A. Sandryhaila and J.M.F. Moura, ``Discrete signal processing on graphs,'' IEEE Trans. on Signal Processing, vol. 61(7), pp. 1644-1656, Apr. 2013.
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Customer Behavior Prediction
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Customer Behavior Prediction
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Customer Behavior Prediction

GSP For Big Data, and How I Got 
Here http://cwww.ee.nctu.edu.tw/~cfung 27



Application: Location-Aware Spatial 
Received Signal Power Prediction
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J. Fink and V. Kumar, “Online methods for radio signal mapping with mobile robots,” Proc. of the Intl. Conf. on Robotics and 
Automation, Anchorage, Alaska, USA, pp. 1940-1945, May 2010.
R. Di Taranto et al., “Location-aware communications for 5G networks,” IEEE Signal Processing Magazine, vol. 31(6), pp. 102-
112, Nov. 2014.
C.C. Fung, C. Liu and R.C. Hung, “Location-aware spatio-temporal received signal power prediction,” under preparation.

Signal model
N  y p w 



Application: Location-Aware Spatial 
Received Power Prediction
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400 training samples (‘*’ sign)
Left: Actual radio map
Right: Predicted radio map
Bottom: Variance of predicted radio map

Actual radio map 
Predicted radio map 

Variance of prediction 



Location-Aware Spatio-Temporal 
Received Power Prediction
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t

C.C. Fung, C. Liu and R.C. Hung, ``Location-aware spatio-temporal received signal power prediction,” under preparation.



Application: GSP for Distributed 
Transmitter Design
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C-RAN network

Physical networks

pn pm

pk

Channel strength between the nth 
and mth TP (transmission point)



GSP for Distributed Transmitter Design
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Distributed Optimization Problems
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How can this problem be resolved?
Dual-consensus algorithm

“Resource” allocation algorithm



GSP for Distributed Transmitter Design
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GSP for Distributed Transmitter Design
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M. Servetnyk and C.C. Fung, “Distributed joint transmitter design and selection for heterogeneous networks using consensus-
based dual decomposition,” submitted to the IEEE Trans. on Signal Processing, 2018.
M. Servetnyk and C.C. Fung, “Distributed joint transmitter design and selection using augmented ADMM,” submitted to the IEEE 
Intl. Conf. on Acoustics, Speech and Signal Processing, 2018.



Distributed JT-CoMP
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GSP: Distributed JT-CoMP
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Conclusions

 Graph model is versatile in representing data in a structure way
 Can represent signal, information and physical network where data lie 

on an irregular structure
 Physical network allows for distributed processing

 Unfortunately, it is not intuitive in representing causality
 Many classical signal processing approaches have graph 

counterpart
 Graph models can solve many issues regarding Big Data
 Open questions:  

 How do we popular the graph (graph learning)
 No initial graph exists
 Or modification of known graph is necessary
 Which topology is used?

 How do get the best bang out of graphs for each application
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What skills are required/learned to be 
successful?
 Good in mathematics and programming

 Optimization, graph theory (graph signal processing), 
statistics, Matlab+Python/Julia(?)

 Willingness and courage to explore and learn new 
(cross-disciplinary) subjects

 Ingenuity
 Be vocal

c.fung@ieee.org
http://cwww.ee.nctu.edu.tw/~cfung

or Google “Carrson Fung”
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