Signal Processing for Machine Learning

Carrson C. Fung Associate Professor Signal Processing for Machine Learning and Applications Group (SPMLAP) Communication Electronics and Signal Processing Lab (CommLab) Institute of Electronics National Chiao Tung University

SPMLAP Group

- Research focuses on
 - Self-supervised federated and distributed learning
 - Graph signal processing for graph learning and graph neural network
 - 6G: Model-based DNN design for intelligent reflective surface (IRS)
- Summer internship abroad for Ph.D. candidates are strongly encouraged (possible for outstanding M.S. students)
 - M.S. and 1st-year Ph.D. students encouraged to apply for the industrial Ph.D. program (教 育部產學博計畫)
- Group members
 - 1 Ph.D., 7 M.S., 1 U.G.
- Possible to get jobs with skills you learned in my group
 - Google (Taipei and Mountain View),
 Qualcomm (San Diego), Amobee (Hsinchu), Realtek (Hsinchu), Umbo Computer Vision, Netapp (Los Angeles)

Networked Data

SP for ML

Networked non-Euclidean Data

3D Molecular Graph

Why Learn the Non-Euclidean Distance?

Node classification problem

• Applications: Community discovery (e.g. Netflix, Pinterest) and offer targeted recommendations to different groups (prediction)

Graph classification problem

• Application: Compare brain graphs across different subjects that have labels (e.g. Alzheimer's disease) may identify if the subject without label may have Alzheimer's

Node regression

• Application: Building an interference graph and identifying the power needed for transmission in a multi-transmitter and multireceiver environment

Online Graph Learning (Graph Tracking)

MANAM

uphan Man Manualan

- Learn the connectome of the brain over time: map of the neural connections in the brain
 - Structural white matter connection
 - Functional statistical interdependencies between physiological time series from different brain regions
 - Effective connectivity shows cause and effect of one neural element on another

Online graph learning (graph tracking)

Some Graph Tracking Results

Ground truth: 1st (left) graph, 2nd (right) graph. Graph transitioned at $n_0 = 14,000$ sample.

PN-IEKF: (left to right): *n* = 13001, 14001, 15001 and 29001 sample.

Graph Neural Network

Graph classification

- Brain disease classification, e.g. Alzheimer's,
 Attention Deficit Hyperactive Disorder (ADHD)
- Attention Deficit Hyperactive Disorder (ADHD) How do we predict certain patient will have Alzheimer's or ADHD?

How should we take into account dynamic graph?

Graph Convolutional Neural (GCN) Network: Cora Dataset

Federated and Distributed Learning over Graph (Heterogeneous Networks)

Heterogeneous networks

- Statistical (data) heterogeneity
 - How will data imbalance and non-IID distributed data affect learning?
- System heterogeneity
 - How will stragglers affect the learning outcome?
- How do we perform "secure" communications during training?
- How changes in the underlying connections (graph) affect training?
 - E.g. In model training over wireless networks, how the learning strategy should adapt to bad channels?
- What if each device (or group of devices) is training a different (personalized) models?
 - In a vehicular (wireless) network, network of cars can detect (and may classify) different objects near them while working together

3D mmWave Radar

What skills are required/learned to be successful?

Good in mathematics and programming

- Optimization, graph theory (graph signal processing), statistics, Matlab+Python/Julia
- Willingness and courage to explore and learn new (crossdisciplinary) subjects
- Ingenuity
- Be vocal, especially with your adviser

THEN MY GROUP IS FOR YOU!!! Stop by and talk to me (ED 639)! <u>c.fung@ieee.org</u> <u>https://mcube.lab.nycu.edu.tw/~cfung</u> or Google "Carrson Fung"

Self-Supervised Learning (SSL)

