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'SPMLAP Group

= Research focuses on

o Self-supervised federated and distributed
learning

o Graph signal processing for graph
learning and graph neural network

o 6G: Model-based DNN design for
intelligent reflective surface (IRS)
= Summer internship abroad for Ph.D.
candidates are strongly encouraged
(possible for outstanding M.S. students)

o M.S. and 1%t-year Ph.D. students encouraged
to apply for the industrial Ph.D. program (Z;

Bl S A )
= Group members i
o 1Ph.D.,7MS.,1UG.

= Possible to get jobs with skills you
learned in my group
o Google (Taipei and Mountain View),
Qualcomm (San Diego), Amobee

(Hsinchu), Realtek (Hsinchu), Umbo
Computer Vision, Netapp (Los Angeles)
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‘ Networked Data
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But the distance of
each pixel is the same

=>» Processing can
done using
traditionally signal
processing technigues
(convolution,
filtering, transform)
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‘ Networked non-Euclidean Data
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Why Learn the Non-Euclidean Distance?

Node classification problem n

» Applications: Community discovery Zah
(e.g. Netflix, Pinterest) and offer 2 .2
targeted recommendations to
different groups (prediction)

Graph classification problem

» Application: Compare brain graphs
across different subjects that have
labels (e.g. Alzheimer's disease) may
identify if the subject without label
may have Alzheimer’s

TouchGraph

(.‘Ilu. ’H}l)

Node regression

» Application: Building an
interference graph and identifying
the power needed for transmission in
a multi-transmitter and multi-
receiver environment

(hag, has)

(h,gg.’tl;g) (flgz,il}-z)
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‘ Online Graph Learning (Graph Tracking)

Aamplitude

Online graph learning (graph tracking)

Vl? >? >$ - 4»?
» Learn the connectome of the brain over time: v, >

map of the neural connections in the brain ooeo >

e Structural — white matter connection V,

* Functional — statistical interdependencies P (X X ]
bgtween physmloglcal time series from Vs > 000 )
different brain regions >

« Effective connectivity — shows cause and time

effect of one neural element on another
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‘Some Graph Tracking Results
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Ground truth: 1%t (left) graph, 2" (right) graph. Graph transitioned at n, = 14,000 sample.
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‘ Graph Neural Network
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Graph classification
» Brain disease classification, e.g. Alzheimer’s, ) )
Attention Deficit Hyperactive Disorder (ADHD) How should we take into account dynamlc
How do we predict certain patient will have Alzheimer’s or graph?
ADHD?
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Graph Convolutional Neural (GCN)
Network: Cora Dataset

TSNE visualization of GCN embeddings for cora dataset

» List of publications in 7 categories (7 classes)
60 1 » Graph signal dimension (channels): 1433
(keywords), {0,1}1433
401 * Number of papers (vertices): 2708
o Adjacency matrix Data dimension (channels)
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» Edge weights (adjacency

0 20 0 0 o0 e matrix) are known
e Determine labels from 7 classes
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Federated and Distributed Learning in
Heterogeneous Networks

Edge
devices |

R A Deliver model to each device
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Federated and Distributed Learning over
Graph (Heterogeneous Networks)

Heterogeneous networks

o Statistical (data) heterogeneity

How will data imbalance and non-11D distributed data affect learning?
o System heterogeneity

How will stragglers affect the learning outcome?

How do we perform “secure” communications during training?

How changes in the underlying connections (graph) affect

training?

o E.g. In model training over wireless networks, how the learning strategy
should adapt to bad channels?

What if each device (or group of devices) is training a different
(personalized) models?

o Inavehicular (wireless) network, network of cars can detect (and may
classify) different objects near them while working together
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‘ 3D mmWave
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What skills are required/learned to be
successtul?

Good in mathematics and programming

o Optimization, graph theory (graph signal processing), statistics,
Matlab+Python/Julia

Willingness and courage to explore and learn new (cross-
disciplinary) subjects

Ingenuity
Be vocal, especially with your adviser

THEN MY GROUP IS FOR YOU!!!
Stop by and talk to me (ED 639)!
c.fung@ieee.org
https://mcube.lab.nycu.edu.tw/~cfung

or Google “Carrson Fung”
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Selt-Supervised Learning (SSL)

* Not enough labels
» Better generalization (to
unseen data)

Pseudo-labels
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