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SPMLAP Group

 Research focuses on
 Self-supervised federated and distributed 

learning
 Graph signal processing for graph 

learning and graph neural network
 6G: Model-based DNN design for 

intelligent reflective surface (IRS)
 Summer internship abroad for Ph.D. 

candidates are strongly encouraged 
(possible for outstanding M.S. students)
 M.S. and 1st-year Ph.D. students encouraged 

to apply for the industrial Ph.D. program (教
育部產學博計畫)

 Group members
 1 Ph.D., 7 M.S., 1 U.G.

 Possible to get jobs with skills you 
learned in my group
 Google (Taipei and Mountain View),  

Qualcomm (San Diego), Amobee
(Hsinchu), Realtek (Hsinchu), Umbo 
Computer Vision, Netapp (Los Angeles)
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Networked Data

SP for ML https://mcube.lab.nycu.edu.tw/~cfung 3

But the distance of 
each pixel is the same

 Processing can 
done using 
traditionally signal 
processing techniques 
(convolution, 
filtering, transform)



Networked non-Euclidean Data
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Why Learn the Non-Euclidean Distance?
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Node classification problem
• Applications: Community discovery 

(e.g. Netflix, Pinterest) and offer 
targeted recommendations to 
different groups (prediction)

Graph classification problem
• Application: Compare brain graphs 

across different subjects that have 
labels (e.g. Alzheimer's disease) may 
identify if the subject without label 
may have Alzheimer’s

Node regression
• Application: Building an 

interference graph and identifying 
the power needed for transmission in 
a multi-transmitter and multi-
receiver environment



Online Graph Learning (Graph Tracking)
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Online graph learning (graph tracking)

• Learn the connectome of the brain over time:  
map of the neural connections in the brain

• Structural – white matter connection
• Functional – statistical interdependencies 

between physiological time series from 
different brain regions

• Effective connectivity – shows cause and 
effect of one neural element on another



Some Graph Tracking Results
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Ground truth: 1st (left) graph, 2nd (right) graph.  Graph transitioned at n0 = 14,000 sample.

PN-IEKF: (left to right):  n = 13001, 14001, 15001 and 29001 sample.



Graph Neural Network
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Graph classification
• Brain disease classification, e.g. Alzheimer’s, 

Attention Deficit Hyperactive Disorder (ADHD)
How do we predict certain patient will have Alzheimer’s or 
ADHD?

How should we take into account dynamic 
graph?

Networked/Graph 
data input + 
adjacency matrix



Graph Convolutional Neural (GCN) 
Network: Cora Dataset
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• List of publications in 7 categories (7 classes)
• Graph signal dimension (channels): 1433 

(keywords), {0,1}1433

• Number of papers (vertices): 2708

Data dimension (channels)

• Edge weights (adjacency 
matrix) are known

• Determine labels from 7 classes
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Federated and Distributed Learning in 
Heterogeneous Networks
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Edge 
devices



Federated and Distributed Learning over 
Graph (Heterogeneous Networks)
 Heterogeneous networks

 Statistical (data) heterogeneity
 How will data imbalance and non-IID distributed data affect learning?

 System heterogeneity
 How will stragglers affect the learning outcome?

 How do we perform “secure” communications during training?
 How changes in the underlying connections (graph) affect 

training?
 E.g. In model training over wireless networks, how the learning strategy 

should adapt to bad channels?
 What if each device (or group of devices) is training a different 

(personalized) models?
 In a vehicular (wireless) network, network of cars can detect (and may 

classify) different objects near them while working together
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3D mmWave Radar
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Estimated value – Cycle (fused data)
(Pedestrian estimated value is multiplied 
by -1)

Estimated value – Cycle (fused data)
(Pedestrian estimated value is multiplied 
by -1)



What skills are required/learned to be 
successful?
 Good in mathematics and programming

 Optimization, graph theory (graph signal processing), statistics, 
Matlab+Python/Julia

 Willingness and courage to explore and learn new (cross-
disciplinary) subjects

 Ingenuity
 Be vocal, especially with your adviser

THEN MY GROUP IS FOR YOU!!!
Stop by and talk to me (ED 639)!

c.fung@ieee.org
https://mcube.lab.nycu.edu.tw/~cfung

or Google “Carrson Fung”
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Self-Supervised Learning (SSL)
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Are videos 
in sequence 
or not?

Pseudo-labels

Pseudo-labels

Pseudo-labels

• Not enough labels
• Better generalization (to 

unseen data)
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