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‘ Mobile has a leap every ~10 years

Mobile voice Efficient voice to

communications reach billions
A A

1980s 1990s
Analog voice Digital voice
AMPs, NMT, TACS D-AMPs, GSM,
IS-95 (CDMA)

Mobile broadband A unified
Focus shift to and emerging connectivity
mobile data expansion problem

A A 4

2000s 2010s 2020s
Wireless Internet Mobile broadband Connected
CDMA2000/EV-DO LTE, LTE intelligent edge
WCDMA/HSPA+  Advanced, Gigabit ~ 5G New Radio
LTE (NR)

The next innovation

platform
A

2030s

Next-gen wireless
Al-native, new
spectrum, RF

sensing, and many

more

B
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5G Advanced

Enhanced Mobile Broadband ICapacity Enhancement

Gigabytes in a second
3D Video — 4K screens

Work & play in the cloud

Smart city cameras -
Augmented reality

Voice
Industnal & vehicular automation

Mission critical broadband

Sensor NW =
Self Driving Car
Massive loT Low Latency
| Massive Connectivity | Ultra-high reliability & Low Latency
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5G Advanced Evolution Starts with Rel.
18

Strengthen the end-to-end
5G system foundation

4« &

Proliferate 5G to virtually
all devices and use cases
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3GPP Release 18 sets off the 5G Advanced Evolution
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'5G Path to 6G

Foundational research Vision forming  Service requirements  Study ltem (proposals) Work item Trials  loDTs @

Workshop

MNext technology leap for new
capabilities and efficiencies

=
56

Continued 56 evolution in tha 6G era
5G Advanced

2M wave of 5G innovations
e i}

=

56 _Rel? )
_ Rel-16 )

Rel-15 J e

A unified platferm for innovaticns

WRC19 WRC-23 WRC-27 WRC-3

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030+
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Expanding 5G to 6G

Immersive platform mobile
and services -.-c\

A smarter wireless platform to

support enhanced
services and
new use cases

Next-generation
broadband

|

Enhanced
_ Societal
.'® sustainability

) Mission- Massive
= critical leT : \
Real-time | *~ FEites Pervasive
control access

l

(
Spatial # Evolutionary dimension
perception = Revolutionary dimension
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‘ Comparison of 5G and 6G attributes

Peak Data Rate
. ! User Experienced
E.rea Tmﬂ’lt - —— ;
apacity 1 Bhys/me -
Maximum B Peak Spectral
Bandwidth "~ 2005k ' mr;:-TEm
E G : .IM.EJHF E TR
 1GH
AE | I | i | I . User Experienced
Reliability = BARSAL Ie Spectral Efficiency
1 ms
0.1ms - T ™
Ajr Latency . ¥ )
I'm,
Blm 500 by -
L
Position Accuracy 1007 kmyh | Network Coverage
Muobility

B

ML for SP/Comm and Comm for Al https:/ | menbe.lab.nycn.edu.tw/ ~cfung



6G: From Connected Things to

Connected Intelligence

o Al will play a huge role in 6G and beyond
» Connecting humans, physical, and digital world

To scale efficiently,
Al processing is expanding towards the edge

\. ra

Py

e

\@P/

Central Cloud Edge cloud On-device

- Connected Intelligent Edge
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Edge Al

Fundamental challenges

o Deep learning, traffic and big data analytics require
tremendous communication and computation resources

Edge Intelligence — moving the intelligence towards
the edge of the network, close to the data source

o Low latency

o Frugal

o Sustainable

o Privacy preserving

o Distributed

o Pervasive at all network layers

234
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Extreme evolution of the wireless foundation

Giga-MIMO unlocking upper mid-band (7-24 GHz), sub-THz,
visible light, distributed massive MIMO, RIS, 5G/6G DSS, ...

Enhanced LDPC, polar codes vs. new techniques such as spinal,
PAC, staircase codes, constellation shaping, ...

Disaggregated network architecture, multi-access interworking with
Wi-Fi/BT/UWB, public/private network interoperability, ...

Post quanturn security, data management and identity privacy,
full encryption down to PHY/MAC, integrity protection, ...

6G WILL BRING TOGETHER

et
L ]
o,

,,
ol

Disruptive revolution with novel technologies

Integrated communication, sensing, compute

Enhanced immersive XR, collaborative positioning, RF sensing
for the merging of physical, digital, and virtual worlds, ...
Cloud-native network convergence

Merging of core and RAN as well as application services

with distributed service model, ...

Wireless machine learning

Cross-node (i.e., network and device) Al/ML air interface design,
and intelligent network operations, ...

Full-duplex communication

Single-frequency and subband full duplex, device-side full duplex,
for communication, sensing and beyond, ...

New device types and service models

Ultra-low power and passive devices, halogram Al, cooperative devices, ...

Evolutionary and revolutionary wireless advances

Across radio and baseband, machine learning and Al, cloud — network, and the merging of the worlds

ML for SP/Comm and Comm for Al

https:/ | meube.lab.nycn.edu.tw/ ~ cfung 11



Extreme evolution of the wireless foundation

Giga-MIMO unlocking upper mid-band (7-24 GHz), sub-THz,
visible light, distributed massive MIMO, RIS, 5G/6G DSS, ...
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Post quantum security, data management and identity privacy,
full encryption down to PHY/MAC, integrity protection, ...

6G WILL BRING TOGETHER

Disruptive revolution with novel technologies
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Integrated communication, sensing, compute
Enhanced immersive XR, collaborative positioning, RF sensing
for the merging of physical, digital, and virtual worlds, ...
Cloud-native network convergence

Merging of core and RAN as well as application services
with distributed service model, ...

iy

Wireless machine learning

Cross-node (i.e., network and device) Al/ML air interface design,
and intelligent network operations, ...

et
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o,

,,
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Full-duplex communication

Single-frequency and subband full duplex, device-side full duplex,
for communication, sensing and beyond, ...

New device types and service models

Ultra-low power and passive devices, halogram Al, cooperative devices, ...

Evolutionary and revolutionary wireless advances

Across radio and baseband, machine learning and Al, cloud — network, and the merging of the worlds
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AISP Group

Research focuses on

o Learning (causal nonlinear) data model using
time-varying graphs (online graph learning)

" Identify rotational drivers of atrial fibrillation in
the heart though cardiac mapping

" Identify channel and/or interference graph for
transceiver design

" Service chain graph embedding for virtual network
function

o 6G: Model-based DNN design for intelligent
reflective surface (IRS)
" Channel estimation
" Beamformer design
" Aerial IRS positioning

o Federated learning for communications using
generative Al model

" Channel estimation
" Beamformer design
" Medical image generation

= Summer internship abroad for Ph.D. candidates
are strongly encouraged (possible for
outstanding M.S. students)

o M.S. and 1%t-year Ph.D. students encouraged to
apply for the industrial Ph.D. program ({5 &z

EHETE)
= Group members: 6 M.S., 1 U.G.
=  Graduates work at Google (Taipei and Mountain
View), Qualcomm (San Diego), Amobee
(Hsinchu), Realtek (Hsinchu), Umbo
Computer Vision, Netapp (Los Angeles)

=¥ ML for SP/Comm and Comm for Al https:/ | meube.lab.nycn.edu.tw/ ~cfung 13



‘ Comm for Al Application: 3D mmWave

Radars
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C.-N. Chan and C.C. Fung, “RFCM for data association and multitarget tracking using 3D radar,” Proc. of the IEEE Intl. Conf. on
Speech, Acoustics and Signal Processing, Calgary, AB, Canada, Apr. 2018.
M. Servetnyk, C.C. Fung, and Z. Han, “Unsupervised federated learning for unbalanced data,” Proc. of the IEEE Global
Communications Conference, Taipei, Taiwan, Dec. 2020.
M. Servetnyk and C.C. Fung, “Distributed dual averaging based data clustering,” IEEE Trans. on Big Data, vol. 9(1), pp. 372-379,

Jan./Feb. 2023.
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Unsupervised Federated Learning:
Federated Clustering Problem

= Training is done at edge nodes and only model parameters are exchanged
=  Important in privacy sensitive applications

o Learning from medical data in different clinics

o Learning from distributed sensor networks

Requires knowledge
about distributec
optimization

Learn Global Data Model by combining
Local Data Models

= Consider clustering problem, where nodes j = 1,...,J observed data from clusters k = 1,...,K with means
(centroids) m,

= Nodejmakesn=1, ..., N observations X;,

= Central server attempts to estimate cluster means

=
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‘ UFL: Federated Dual Averaging
Algorithm

=
<
: Deliver accumulated gradient

to each device
to compute centroid

=34
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‘ UFL: Federated Dual Averaging
Algorithm

[o

Relabel data based on new means

and recompute gradients
at each node

=2
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‘ UFL: Federated Dual Averaging
Algorithm

G
- |HE>ZIE:H1)IHE> m’({t+1)

Upload gradients and combine
at the cloud to compute
Accumulated gradient and mean

=44
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‘ UFL in Asynchronous Networks

Upload gradients and combine
at the cloud to compute
Accumulated gradient and mean

=34
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‘ UFL in Asynchronous Networks

Upload gradients and combine
at the cloud to compute
Accumulated gradient and mean

R.-Y. Hsu, C.C. Fung and M. Servetnyk, “Unsupervised federated learning for unbalanced data in asynchronous networks,” under

presentation.

34
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Air Interface for Enhanced Access:

Increase Frequency =2 Less Interference

...but also higher
propagation loss -
signal travels less
distance and scatters
quickly

]
lllllllllllllllllllllllllllllllllllllllll

Fresnel zone and how blockages and weather can effect mmWave signa

=
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Joint Beamformer and Aerial Intelligent
Retlective Surface (AIRS) Positioning Design
Z

Y, = hkR(@Hquqsq +W,

T. Chao, C.C. Fung, Z.-E. Ni and M. Servetnyk, “Joint beamforming and aerial IRS positioning design for IRS-assisted MISO
system with multiple access points,” IEEE Open Journal of the Communications Society, vol. 5, pp. 612-632, Dec. 2023.

A.M. Huroon, Y.-C. Huang, C.C. Fung and L.-C. Wang, “Generalized Bender’s Decomposition (GBD) for reconfigurable intelligent
surface-assisted transmission strategy problem”, Proc of the IEEE VTS Asia Pacific Wireless Communications Symposium (VTS-
APWCS), Seoul, Korea, Aug. 2022.

T. Chao, Joint Beamforming Design in IRS-Assisted MISO Systems, M.S. Thesis, National Yang Ming Chiao Tung University, Aug.
2021. (Adviser: C.C. Fung)

%4
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Non-Terrestrial Network (INTIN): IRS-
assisted UAYV Scenarios
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Figure 2. Five representative scenarios of IRS-assisted UAV communications.
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Intelligent Reflective Surtace (IRS)

Joint transmitter and IRS design
Channel estimation (large number of
IRS elements is prohibitive)
» Compressed sensing and model-
based neural network

Intelligent Reflective Surface

Large Intelligent Surface

O
O
O
O
EEEEEEEEEE
EEEEEEEEEE e,

Interaction Matrix I

Source: https://www.techexplorist.com/mit-inexpensive-rforce-
amplify-wi-fi-signal-ten-times/29708/

" I] hTr,k m

Transmitter Receiver

=34
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Traditional Iterative Optimization
Methods =2 Unfold Into DNN

v @
Wit

Input sample Hidden Layer Hidden Layer Hidden Layer Output

=44
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Explainable Model-Driven Neural
Network for Communications

Algorithm Unrolling: Unrolling the Iterative Shrinkage Thresholding Algorithm (ISTA) for
MIMO Channel Estimation

> DK
k % |
hC( )_> »/T\ > T;t(k) ( ) Y hc(k+1)

~ NH o
—» FK +—» X—» X—» FK —» tk j

~H
y > X —> FW

Slngle Iayer of the ISTA-LS-Net and ISTA-CS-Net. Learnable parameters: t(k),ﬂ,(k), F(k), D(k)

z +A|h.], = f(h;)+a(h,) D" has different configurations
Can be made into a CNN to reduce # of trainable
parameters

he = arghmin Hy — )N(Uhc
H~

C.C. Fung and D. Ivakhnenov, “Model-driven neural networks based MIMO channel estimator via eigenmode representation,”
presented at the IEEE Communication Theory Workshop, Hualien, Taiwan, Jul. 2023.

34
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NMSE vs. SNR Performance for InF

(Indoor) Channel at 2.5 GHz
Deterministic LoS

-28 T T T T T T -28

LS
LMMSE
ISTA-LS-Net: 10 layers

LS
LMMSE ] -30 7
ISTA-LS-Net: 10 layers

-30

-32 1

-34

i 36 = o
=) =2
é -38 é -
Z 40+ zZ .

42}

44 F

46 | ~

48 : : ‘ : ‘ : -48 : ‘

4 -2 0 2 4 6 8 10 -4 -2 0 2 4 6 8 10
SNR (dB) SNR (dB)

e Learnable parameters: t* F* DY
¢ 10 layers
e ~830K parameters
e 1X=05

C.C. Fung and D. Ivakhnenov, “Model-driven neural networks based MIMO channel estimator via eigenmode representation,”
Presented at the IEEE Communication Theory Workshop, Hualien, Taiwan, Jul. 2023.
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‘ NMSE vs. SNR Performance of ISTA-CS-
Net for UMa and InF Channels at 28 GHz

Channel Estimation on UMa Channel Estimation on InF

60 T T T T 50 T T T T
—— | 8 —»— | S
—&— LMMSE 40 —&— LMMSE T
40 OMP: K = 1 ] / OMP: K = 1
y — A OMP:K=2 304 — A OMP:K=2 1
—A— OMP:K=5 —A— OMP: K=5
201 —A— ISTA-CS-Net: 5 layers | | 20 | —A— ISTA-CS-Net: 5 layers | -
e ISTA-CS-Net: output e ISTA-CS-Net: output
m m
=} k=1
L L
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rad Z _

80 s ‘ s s
-50 -40 -30 -20 -10 0 10
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ML for SP/Comm and Comm for Al https:/ | menbe.lab.nycn.edu.tw/ ~cfung 28




Deep MMSE MIMO Channel Estimator

Using Reinforcement lLearning

1
batch

~ 2
Apgt1 = l)\k +axk (|—%3| % Hh — &(y; Qk)“2 - fk)]
- +
Ort+1 =0k — ag Ak Ve, E [Hh — o(y; 9k)||%]

thyt =tk — g (1 —Appq)

h
o2ngpT . 3 2npnp
Yy € R . ]\[LP . N(F%: 0'3) S&ﬂlple helR
i=1,....,2ngnp

. Y T

Environment | menk % n,

XecenpxT

Y:HX+W WEnTRXT

=
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Deep MMSE MIMO Channel Estimator

Using Reinforcement lLearning

1
batch

Ajs1 = lkk +asg (ﬁ ) b — é(; ek)Hz - tk)] Training via Primal-Dual

5 N LY
6ri1 — 61 — cio kYo, E [Ih — 6y 00)113] f)ptlmlzatlon Method

Guarantees
thp1 =1t — g n(1 — Apg1) optimality when
strong duality exists
h
o2ngpT . 3 2npnp
v € R I MLP - N (i, 04) Sample heR
i=1,....,2ngnp
: Y T
Environment H C Qﬁ X nop
Y=HX+W| w55
— W cnp X T
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Deep MMSE MIMO Channel Estimator

Using Reinforcement lLearning

1
batch

Akt = l)\k + oy g (ﬁ % Hh— 5(3;‘%)“2 — fk)]

- +
Or+1 =0k — ag rAkVe, E [||h — o(y; Qk)“%]

eyl =t —og (1 —Apt)

h Can be replaced by
graph neural network for
etter performance
2npT o % 2nrn
y € RT'F | MLP ||i N (pi, 04) sample h ¢ R*"7T"R

= 1; ?QanT

. YengxT
Environment HEnp x np
Y:HX‘I_W WengxT
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‘ Networked Data

. , :c

54

¥ ] 4
4 % [ -
¥ . rF v 72
. ;’. p -
3 N A A

But the distance of
each pixel is the same

=>» Processing can
done using
traditionally signal
processing technigues
(convolution,
filtering, transform)

=34
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‘ Networked non-Euclidean Data
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Identification of Rotational Drivers (RDs)
fOI' Atl’iﬂl Fibflﬂathﬂ Possible solutions:

Granger causality vector map ¢ Using linear and nonlinear vector
5 5 3 autoregressive model to overcome

. spatial resolution problem

Intracardiac electrogram (IEGM)

1 *  Online solution to track the transient
:25 4 5 A behavior of IEGM (RDs)
: l
5 7 8 9 RD that causes atrial fibrillation
6
4 , .
8 Causality pairing index
9 3 Sink Pixel
1 /2|3 |4 |5|6 7 8|9

Challenges:
»  Low spatiotemporal resolution of the

mapping

* Lead to false positive RDs
*  Variability in the IEGM signals causes
RDs to exhibit a winding and transient
behavior

Source Pixel
Wi d| s WN=

M. Rodrigo et al., “Identification of dominant excitation patterns and sources of atrial fibrillation by causality analysis,” Annals of
Biomedical Engineering, Feb. 2016.

B.S Handa et al., “Granger causality-based analysis for classification of fibrillation mechanisms and localization of rotational
drivers,” Circulation: Arrhythmia and Electrophysiology, pp. 258- 273, Mar. 2023.

Z.-Y.Wu, C.C. Fung, J.-Y. Chang, H. Chuang and Y.-C. Lin, “Online graph learning via proximal Newton method from streaming
data,” https://www.techrxiv.org/doi/full/10.36227/techrxiv.24311959.v1.
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Why Learn the Non-Euclidean Distance?

Node classification problem n

» Applications: Community discovery Zah
(e.g. Netflix, Pinterest) and offer 2 .2
targeted recommendations to
different groups (prediction)

Graph classification problem

» Application: Compare brain graphs
across different subjects that have
labels (e.g. Alzheimer's disease) may
identify if the subject without label
may have Alzheimer’s

TouchGraph

(.‘Ilu. ’H}l)

Node regression

« Application: Building an
interference graph and identifying
the power needed for transmission in
a multi-transmitter and multi-
receiver environment

(hag, has)

(h,gg.’tl;g) (flgz,il}-z)
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‘ Denoising Diftusion Probability Models
(DDPM)

| o I—:I- —H ;‘ct 1 H" Ty l—:- —H Trr |

Neural network (parameterized by 0 that
tries to capture the probability distribution
of the noise added at each diffusion step

=34
g ML for SP/Comm and Comm for Al https:/ | meube.lab.nycn.edu.tw/ ~ cfung 36



DDPM Reverse Process — Model Training

Learning the true q(X.,|X;) from pg(X..1|X;)

ML for SP/Comm and Comm for Al https:/ | menbe.lab.nycn.edu.tw/ ~cfung 37



34,

43

DDPM for Communications

woow ;v\
y = Xh >$ >é > >

(o—» y=Xh+w
I q(h |h)

Yo —» °®°°e—> VYu > Y, > eee —» Vg

v— pﬁ(ht—1|ht) I

= h=(X"X)" X"y

What models to use? Why?
MISO signal recovery?

* Needs to deal with multiplicative noise: y = Hx + w
MIMO Precoding? Y = HFX + W

For more complicated systems and problems?
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Traditional Digital Communication
Systems

* Source coding: remove « Ease of radiation
redundancy 9 merease efficiency + Reduce noise and interference + Internal and external
¢ Channel coding: increase ’

- H - !
) . + Increase BW efficiency: R,/ additive noise
redundancy —» protect information + Channel assienment , ,
' s * Convolutive noise

* Multiplexing

Source Channel
Source W Encoder —» Encoder and +—® Modulator —» RF
Interleaver

* Remove ISI

Channel S
RF —» Equalization —® | Demodulator —® Decoder and — ouree 1 p

i Decoder
Deinterleaver
Svnchronization:
) S

Carrier & Timing

_ _ o * Carrier: Coherent modulation
Keep in mind that this 1s only a model! requires carrier

* Timing: Need to know when to
Can we make 1t simpler‘? More sample to recover digital signal

complicated? Consequences?
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Traditional Digital Communication
Systems

Source —» Source

Can GenAl model revolutionize communication systems?
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‘ Graph Learning and Graph Neural

Networks for Communications

W W W
X = F(G) »é) »& > >é > Y = FOX+W
q(G 1)
Xg —» e —> X1 > X, P ecee —>» X+

. P(GalG)

How to deal with generative function F?
How to exploit generative Al in an online setting?

Z.-Y.Wu, C.C. Fung, J.-Y. Chang, H. Chuang and Y.-C. Lin, “Online graph learning via proximal Newton method from streaming
data,” https://www.techrxiv.org/doi/full/10.36227/techrxiv.24311959.v1.

Z.-Y. Wu, Online Graph Learning Via Proximal Newton Method, M.S. Thesis, National Yang Ming Chiao Tung University, Sep.
2022. (Adviser: C.C. Fung)
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Why Not GAN?

Communications for Al

* GAN (Generative Adversarial Network) has been known to suffer from statistical
heterogeneity (nonlID data) between agents

» Is DDPM robust to system heterogeneous (network asynchronicity)?

e Deliver model to each device

%4
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Fundamental Pillars for Understand Al or
Doing Research in Al

Data Science, Machine and
Deep Learning

Linear Algebra
Probability &
Statistics

B

ML for SP/Comm and Comm for Al https:/ | menbe.lab.nycn.edu.tw/ ~cfung
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What skills are required/learned to be
successtul?

Good in mathematics and programming

o Linear algebra, optimization, statistics, Matlab+Python/Julia
Willingness and courage to explore and learn new (cross-
disciplinary) subjects

Ingenuity

Be vocal, especially with your adviser

THEN MY GROUP IS FOR YOU!!!
Stop by and talk to me (ED 639)!
c.fung@ieee.org
https://mcube.lab.nycu.edu.tw/~cfung
or Google “Carrson Fung”
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