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Online graph learning

» Social network analysis

» Brain graphs and prediction of Parkinson and
other brain diseases

» Prediction and tracking of rotational drivers for
atrial fibrillation

Attribute graph clustering

» Terrorist and gang groups identification

¢ Recommender system

Image segmentation

|
I Federated and distributed learning (Communications
: for Al

I  Distributed data association in automotive radars
I for object tracking

: » Distributed cancer model construction

I e Latency rebalancing for asynchronous networks
I

|

I

|

I

|

I

|

Learn Global Data Model by combining
Local Data Models

Al for communications

* Beam align (“channel” estimation)

» Beamforming (far-field with plane
wave)

» Beamfocusing (near-field with
spherical wave)
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Evolutionary and revolutionary wireless advances

Acress radio and baseband, machine leaming and Al, cloud — network, and the merging of the warlds

« Interference of radiation pattern
from antenna elements
 Distributed transceiver design for
cell-free communications (improve
latency)
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Extreme evolution of the wireless foundation

Giga-MIMO unlocking upper mid-band (7-24 GHz), sub-THz,
visible light, distributed massive MIMO, RIS, 5G/6G DSS, ...

ctral efficiency

1nel coding, modulation scheme
d

and wavetform design

Enhanced LDPC, polar codes vs. new techniques such as spinal,
PAC, staircase codes, constellation shaping, ...

. A P S oy - b e~ s
cxXpanded network topolody and ennancea aevice

-l
MODRILTY Management

Disaggregated network architecture, multi-access interworking with
Wi-Fi/BT/UWB, public/private network interoperability, ...
St eng thened

ity building

Post quantum security, data management and identity privacy,
full encryption down to PHY/MAC, integrity protection, ...

6G WILL BRING TOGETHER

Disruptive revolution with novel technologies

j] |‘

Integrated communication, sensing, compute

Enhanced immersive XR, collaborative positioning, RF sensing
for the merging of physical, digital, and virtual worlds, ...

Cloud-native network convergence

Merging of core and RAN as well as application services
with distributed service model, ...

Wireless machine learning

Cross-node (i.e., network and device) Al/ML air interface design,
and intelligent network operations, ...

,,
ol

Full-duplex communication

Single-frequency and subband full duplex, device-side full duplex,
for communication, sensing and beyond, ...

New device types and service models

Ultra-low power and passive devices, hologram Al, cooperative devices, ...

Evolutionary and revolutionary wireless advances

Across radio and baseband, machine learning and Al, cloud — network, and the merging of the worlds
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Networked non-Euclidean Data
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‘ Online Graph Learning (Graph Tracking)

Aamplitude

Online graph learning (graph tracking)

Vl? >? >$ - 4»?
* Learn the connectome of the brain over time: v, >

map of the neural connections in the brain ooeo >

e Structural — white matter connection V,

* Functional — statistical interdependencies P (X X ]
bgtween physmloglcal time series from Vs > 000 )
different brain regions >

« Effective connectivity — shows cause and time

effect of one neural element on another

=44
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Identification of Rotational Drivers (RDs)
fOI' Atl’iﬂl Fibflﬂathﬂ Possible solutions:

Granger causality vector map ¢ Using linear and nonlinear vector
5 5 3 autoregressive model to overcome

. spatial resolution problem

Intracardiac electrogram (IEGM)

1 *  Online solution to track the transient
:25 4 5 A behavior of IEGM (RDs)
: l
5 7 8 9 RD that causes atrial fibrillation
6
4 , .
8 Causality pairing index
9 3 Sink Pixel
1 /2|3 |4 |5|6 7 8|9

Challenges:
*  Low spatiotemporal resolution of the

mapping

* Lead to false positive RDs
*  Variability in the IEGM signals causes
RDs to exhibit a winding and transient
behavior

Source Pixel
Wi d| s WN=

M. Rodrigo et al., “Identification of dominant excitation patterns and sources of atrial fibrillation by causality analysis,” Annals of
Biomedical Engineering, Feb. 2016.

B.S Handa et al., “Granger causality-based analysis for classification of fibrillation mechanisms and localization of rotational
drivers,” Circulation: Arrhythmia and Electrophysiology, pp. 258- 273, Mar. 2023.

Z.-Y.Wu, C.C. Fung, J.-Y. Chang, H. Chuang and Y.-C. Lin, “Online graph learning via proximal Newton method from streaming
data,” https://www.techrxiv.org/doi/full/10.36227/techrxiv.24311959.v1.
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https://www.techrxiv.org/doi/full/10.36227/techrxiv.24311959.v1

‘ Federated and Distributed Learning

= | Server coordinating
' the training of a
@ global Al model

Devices with
local Al models

https://en.wikipedia.org/wiki/Federated_learning

https://commons.wikimedia.org/wiki/File:Federated_learn
ing_%28centralized_vs_decentralized%29.png
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Comm for Al Application: 3D mmWave
Radars
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C.-N. Chan and C.C. Fung, “RFCM for data association and multitarget tracking using 3D radar,” Proc. of the IEEE Intl. Conf. on
Speech, Acoustics and Signal Processing, Calgary, AB, Canada, Apr. 2018.

M. Servetnyk, C.C. Fung, and Z. Han, “Unsupervised federated learning for unbalanced data,” Proc. of the IEEE Global
Communications Conference, Taipei, Taiwan, Dec. 2020.

M. Servetnyk and C.C. Fung, “Distributed dual averaging based data clustering,” IEEE Trans. on Big Data, vol. 9(1), pp. 372-379,
Jan./Feb. 2023.
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Attribute Graph Clustering
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‘ Mutual Coupling-Aware Beam Alignment,
Beamforming and and Beamfocusing

(Digital) Precoding, or beamforming, a broadbang

=

boosts the SINR in the baseband

Requires (expensive) RF chains to

every antenna

3. Antenna beamforming (e.g. using
phase array antenna array) alone
cannot achieve the spectral
efficiency required

N

Societal
. ® sustainability

Immersive platform
and services @,

Channel changes in both large
scale (propagation loss,

shadowing) and small scale
air molecule) Real-time | * Pervasive

Mission- Massive
7 critical loT %
¥ o
control access
'
a

1. (Digital) Precoding, with holographic g oo RS
meta antenna array (HMA), can serve
users at different directions and 1. Cell-free HMIMO

distance, called beamfocusing
2. Possible architecture: RF chain only different HMA access
supply to each microstrip that points (APs) to

contains closely spaced antenna 7 simultaneously serve
elements multiple users

systems will require

* Increase in mutual coupling » Distributed

\ \a precoding design,
RF chain \ : perhaps using

o g multiagent RL
—‘ RF chain i—'

2. Scalability issue
34,
®f ML for SP/Comm and Comm for Al hittps:/ | meube.lab.nycu.edn.tw/ ~cfung 11
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Mutual Coupling
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Illustration of mutual coupling mechanisms in (a) transmitting mode and (b) receiving mode. [CZL18]

X. Chen, S. Zhang and Q. Li, “A review of mutual coupling in MIMO system,” IEEE Access, pp. 24706-24719, Apr. 2018.
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Possible Solutions

Use of del for distribution learning
Physics-informed neural networks ( )

Q
Q
Q

(Multiagent) Deep reinforcement learning
o E.g. (valued-based) , (policy-based)
o To adapt to time-varying conditions

Model-agnostic meta learning ( )
o To quickly adapt trained model to nonstationary settings

Large language models ( )
o Solving complicated problems

%4
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What skills are required/learned to be

successful?

= Good in mathematics and programming
o Linear algebra, optimization, statistics, Matlab+Python/Julia

= Willingness and courage to explore and learn new (cross-
disciplinary) subjects

= Ingenuity
= Be vocal, especially with your adviser

THEN MY GROUP IS FOR YOU!!!
Stop by and talk to me (ED 639)!
c.fung@ieee.org
https://mcube.lab.nycu.edu.tw/~cfung
or Google “Carrson Fung”
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