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Online graph learning
• Social network analysis
• Brain graphs and prediction of Parkinson and 

other brain diseases
• Prediction and tracking of rotational drivers for 

atrial fibrillation
Attribute graph clustering
• Terrorist and gang groups identification
• Recommender system
• Image segmentation

Federated and distributed learning (Communications 
for AI)
• Distributed data association in automotive radars 

for object tracking
• Distributed cancer model construction
• Latency rebalancing for asynchronous networks

AI for communications
• Beam align (“channel” estimation)
• Beamforming (far-field with plane 

wave)
• Beamfocusing (near-field with 

spherical wave)
• Mutual coupling

• Interference of radiation pattern 
from antenna elements

• Distributed transceiver design for 
cell-free communications (improve 
latency)
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Networked non-Euclidean Data
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Online Graph Learning (Graph Tracking)
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Online graph learning (graph tracking)

• Learn the connectome of the brain over time:  
map of the neural connections in the brain

• Structural – white matter connection
• Functional – statistical interdependencies 

between physiological time series from 
different brain regions

• Effective connectivity – shows cause and 
effect of one neural element on another



Identification of Rotational Drivers (RDs) 
for Atrial Fibrillation
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Intracardiac electrogram (iEGM)

RD that causes atrial fibrillation

M. Rodrigo et al., “Identification of dominant excitation patterns and sources of atrial fibrillation by causality analysis,” Annals of 
Biomedical Engineering, Feb. 2016.
B.S Handa et al., “Granger causality-based analysis for classification of fibrillation mechanisms and localization of rotational 
drivers,” Circulation: Arrhythmia and Electrophysiology, pp. 258- 273, Mar. 2023.
Z.-Y. Wu, C.C. Fung, J.-Y. Chang, H. Chuang and Y.-C. Lin, “Online graph learning via proximal Newton method from streaming 
data,” https://www.techrxiv.org/doi/full/10.36227/techrxiv.24311959.v1.

Granger causality vector map

Causality pairing index

Challenges:
• Low spatiotemporal resolution of the 

mapping
• Lead to false positive RDs

• Variability in the iEGM signals causes 
RDs to exhibit a winding and transient 
behavior

Possible solutions:
• Using linear and nonlinear vector 

autoregressive model to overcome 
spatial resolution problem

• Online solution to track the transient 
behavior of iEGM (RDs)

https://www.techrxiv.org/doi/full/10.36227/techrxiv.24311959.v1


Federated and Distributed Learning
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https://en.wikipedia.org/wiki/Federated_learning https://commons.wikimedia.org/wiki/File:Federated_learn
ing_%28centralized_vs_decentralized%29.png



Comm for AI Application: 3D mmWave
Radars
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C.-N. Chan and C.C. Fung, “RFCM for data association and multitarget tracking using 3D radar,” Proc. of the IEEE Intl. Conf. on 
Speech, Acoustics and Signal Processing, Calgary, AB, Canada, Apr. 2018.
M. Servetnyk, C.C. Fung, and Z. Han, “Unsupervised federated learning for unbalanced data,” Proc. of the IEEE Global 
Communications Conference, Taipei, Taiwan, Dec. 2020.
M. Servetnyk and C.C. Fung, “Distributed dual averaging based data clustering,” IEEE Trans. on Big Data, vol. 9(1), pp. 372-379, 
Jan./Feb. 2023.



Attribute Graph Clustering
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Mutual Coupling-Aware Beam Alignment, 
Beamforming and  and Beamfocusing
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Channel changes in both large 
scale (propagation loss, 
shadowing) and small scale
(air molecule)

1. (Digital) Precoding, or beamforming, 
boosts the SINR in the baseband

2. Requires (expensive) RF chains to 
every antenna 

3. Antenna beamforming (e.g. using 
phase array antenna array) alone 
cannot achieve the spectral 
efficiency required

RF chain

RF chain

Digital 
Precoder

1. (Digital) Precoding, with holographic 
meta antenna array (HMA), can serve 
users at different directions and 
distance, called beamfocusing

2. Possible architecture: RF chain only 
supply to each microstrip that 
contains closely spaced antenna 
elements
• Increase in mutual coupling

1. Cell-free HMIMO 
systems will require 
different HMA access 
points (APs) to 
simultaneously serve 
multiple users
• Distributed 

precoding design, 
perhaps using 
multiagent RL 

2. Scalability issue



Mutual Coupling
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Illustration of mutual coupling mechanisms in (a) transmitting mode and (b) receiving mode. [CZL18]

X. Chen, S. Zhang and Q. Li, “A review of mutual coupling in MIMO system,” IEEE Access, pp. 24706-24719, Apr. 2018.



Possible Solutions

 Use of diffusion model for distribution learning
 Physics-informed neural networks (PINNs)

 Accounting for mutual coupling
 Near-field effect
 Polarization

 (Multiagent) Deep reinforcement learning
 E.g. (valued-based) DDPG, (policy-based) PPO
 To adapt to time-varying conditions

 Model-agnostic meta learning (MAML)
 To quickly adapt trained model to nonstationary settings

 Large language models (LLMs)
 Solving complicated problems
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What skills are required/learned to be 
successful?
 Good in mathematics and programming

 Linear algebra, optimization, statistics, Matlab+Python/Julia
 Willingness and courage to explore and learn new (cross-

disciplinary) subjects
 Ingenuity
 Be vocal, especially with your adviser
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THEN MY GROUP IS FOR YOU!!!
Stop by and talk to me (ED 639)!

c.fung@ieee.org
https://mcube.lab.nycu.edu.tw/~cfung

or Google “Carrson Fung”

mailto:c.fung@ieee.org
https://mcube.lab.nycu.edu.tw/%7Ecfung
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