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ABSTRACT

Most optimal quantizer design algorithms do not
take into account the changes of the channel character-
istics due to the inserted channel coder. In this paper,
the overall channel characteristics including the chan-
nel coder is examined and an approximation model is
proposed. Based on this model, a method for design-
ing a quantizer (source coder) and the error control
code together to achieve the best overall performance
is propesed. Preliminary, simulation results reinforce
the speculation that the error control codes would be
useful only when the raw error rate is below a certain
value.

1. INTRODUCTION

Shannon [1] showed that in the asymptotical cases
(very large data blocks), source coding and channel
coding problems can be treated separately without sac-
rificing the overall optimality. However, in Shannon’s
derivations there is no constraint on the delay and the
complexity of the coders. In practical systems, we of-
ten cannot identify the source and the channel mod-
els perfectly; thus, the “separation principle” may not
be an efficient approach for image transmission over
wireless channels, where the communication channel is
time-varying and noisy and the data bit rate is very
low. Under the realistic constraint of limited complex-
ity, the combined source and channel coding approach
may be able to offer a superior performance than the
separated coding approach.

The goal of this paper is to design a source coder (a
scalar or vector quantizer) and the error control code
(ECC) simultaneously to achieve the best overall per-
formance. The concept behind our approach is as fol-
lows. In many applications such as image over wireless
channel, we are often given a bit rate upper bound and
a raw transmission bit error probability. Now consid-
ering simply a continuous memoryless source (such as
image transform coefficients), we look for the optimal
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scalar quantizer and error control code that together
would produce the least distortion at the destination.
The total distortion at the decoder has three portions:
source compression error, channel transmission error,
and the cross effect due to the interaction between these
two terms. If we use a strong channel code, the trans-
mission error can be neglected and the total distortion
is caused mainly by the source coding. However, a
strong channel code implies a significant amount of re-
dundancy being introduced. That is, fewer bits can be
used by the source coder and thus the source coding
error increases. On the other hand, if the source coder
uses up all the channel capacity, the transmission error
probability is high and thus may become the domi-
nate factor in the total destination distortion. What
we look for is the optimal operating point at which the
best compromise is achieved.

2. SUPER CHANNEL MODEL

Most optimal quantizer design algorithms for a noisy
channel do not consider the effects caused by the chan-
nel coder [2]; that is, the design of a quantizer depends
only on the channel noise without including the changes
of channel characteristics due to the inserted channel
coder. Figure 1 shows the performance of various 4-
level Gaussian signal quantizers operated under differ-
ent crossover probabilities of binary symmetric chan-
nels (BSC). The solid lines are quantizers designed for
specific crossover error probabilities 0.0001, 0.001, 0.01,
0.1, 0.25, and 0.5. The dash line, in Figure 1, is the
lower bound of these solid lines; that is, it is the trajec-
tory of all the minimum MSE 4-level quantizers each is
designed and operated at single crossover error proba-
bility. These results show that the quantizer designed
for a lower noise channel, say, does not perform well on
a very noisy channel.

Now, let us consider the effect of channel coding.
We examine the overall channel characteristics includ-
ing the channel coder and propose an approximation



model. As shown in Figure 2, the super channel, rep-
resenting the channel I/0 characteristics with channel
coding, is a function of the original channel bit error
probability and the channel coder. We like to find the
super channel characteristics and derive the relation-
ship between the original noisy channel and the super
channel. »

Assume at error-correcting (N, K) linear block code
is in-use as shown by Figure 3, and the original channel
is a memoryless binary symmetric channel (BSC) with
crossover probability p. It is conjectured and proved
by simulations that the behavior of the super channel

is approximately also a BSC with a different crossover

probability p’. We have not been able to derive the
exact expression of p’, but its upper and lower bounds
can be estimated. According to the results given by
Mac-Williams and Sloane [3] and Cain and Simpson
[4], for a (N, K) linear block code, we can obtain the
bounds of P, pmin < P’ < Pmae, Where

N—t-1

Pmaz = iﬂz;l (t_j\}_z). ( Jj )pi(l _p)N—i
+z§::_t< HECE Lt

1
Pmin = ’Epm(E)) (2)

and P (E) is upper bounded by

( ]j )pi(l -p)V .

The equality holds for perfect codes. Figures 4 and
5 show the simulation results of a BCH (255, K') code
over a BSC with crossover probabilities 0.1 and 0.01.

Pa(B)< Y.

t=t+1

3)

3. COMBINED QUANTIZER AND ECC
DESIGN

For a BSC with crossover probability p and a given
length NV, the crossover probability p’ of the super chan-
nel and its bounds ppin and ppa, are functions of t,
the error correction length; that is, pmn(¢) < p(t) <
Pmaz(t). Now, we take the worst case to design the op-
timal quantizer over a super channel. In other words,
. we agsume that the crossover probability p/ (t) equals to
the upper bound ppaz(t). Then we look for the opti-
mum parameters: the number of quantization levels M,
the quantizer decision thresholds 2}, the reconstruction
levels y;, and the error-correction length t. Based on
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above assumptions, the MSE of the entire system, d(-)
can be expressed as

x
i

M M .
dei,yj,t, M) = ZZPj/z'(i)/ (z - v:)*po(e)dz,

1=1 j=1 z
(4)
where 2; (1 =2,3,..., M) is the decision threshold, Y5
(j=1,2,..., M) is the reconstruction level, ¢ refers to

the error-correction length, and M is the number of the
quantizer levels. The transition probability Pji(t) in
(4) is defined by

Pifilt) = p/(0) (1 = p ()<
where p'(t) is the super channel crossover probability,
K is the message length in a BCH (N, K) code, and
du(yi,y;) is the Hamming distance between y; and
yj. Now, the problem becomes a multi-dimension op-
timization problem. However, not all the variables in
d(-) are floating numbers; for example, ¢t and M only
allow integer values. To simplify the problem, we first
assume that M is fixed. Then for a fixed ¢, the func-
tion d(z;,y;,t) becomes di(z;,y;). Hence, the neces-
sary conditions for minimizing d;(z;, y;) are

{ Shleivi) — o, ;=23 .. . K

%ﬁ“ =0; j= 12K - ©®

The optimum z;* and y;* become
o = Ziml Bia-n(t) = Pyi)]
L2 W (B e(t) — Pipa(0)]

(7

and .
. Zszl Pj1i(t) fzf“ zp(x)de

Yi = K iy )
2i=1 Pj/i(t)fzj po(z)de

Thus far, the optimal z} and y; for a specific ¢ have
been derived. The performance of three 4-level quantiz-
ers is shown in Figure 6. The dashed-line is the quan-
tizer optimized for a crossover probability (in Figure
1) and its outputs passing through a channel with the
same crossover probability. The dotted line is the same
quantizer outputs passing through a BCH(255,179)
code (t = 10) before entering the same channel. The
solid line is the quantizer designed for the super chan-
nel containing both the BCH codec and the origi-
nal raw channel, the so-called combined-designed quan-
tizer. We use the upper bound in modeling the super
channel. When the raw rate > 0.04, this upper bound
1s greater than the raw rate. Hence, the optimal quan-
tizer with BC'H code has a higher M SE than the one
without. The combined-designed quantizer takes the

(8)



advantage of the changing characteristics of the chan-
nel when a BCH code is added. When the channel
crossover probability < 0.04, the combined quantizer
with BC H code achieves a better performance than the
quantizer designed without considering channel coder.
However, when the crossover probability > 0.04, it is
the opposite. This is due to the fact that when the av-
erage error rate is greater than 10 error bits (255x0.04)
in one block, the channel coder can not decode the error
bits correctly. It turns out the decoded error probabil-
ity (upper bound) is larger than that of the uncoded
one. Therefore, if the raw error rate is higher a certain
threshold rate (related to t), the combined quantizer
with ECC is not preferred.

The ultimate justification of a coder performance
is its rate-distortion curve (R-D curve). Figure 7 indi-
cates that for a certain portion of the channel crossover
probability (error probability < 0.02) the combined
method is the best (close to the ideal Gaussian source
R — D curve, the lower left solid line). This is the re-
gion where the BCH code is most effective. Note that
the horizontal axis in Figure 7 is the transmission bit
rate over channel (including BCH-insteated bits). The
mismatched case (optimal quantizer with BCH code)
is inferior because it has higher MSE and also a higher
bit rate.

4. CONCLUSION

The goal of this paper is to design a scalar quan-
tizer and the error control code simultaneously to ob-
tain the best performance. In section 2, we propose a
super channel model which represents the channel I/O
characteristics when the channel coder is included. The
super channel channel model is a function of the origi-
nal channel bit error probability and the channel coder.
Based on the super channel model, a combined quan-
tizer and linear ECC design for noisy channels has been
proposed. The preliminary simulation results show sev-
eral interesting results. They reinforce the speculation
that the error control codes are useful only when the
raw error rate is smaller than a certain value. In ad-
dition, the combined design produces a better (smaller
M SE) quantizer for small raw error rates.
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