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Abstract—The goal of this paper is to design and implement a 
virtual listening-point audio system by constructing a physical 
testing environment in an anechoic chamber. Several techniques 
are employed in implementing this system. They are blind source 
separation (BSS), direction of arrival (DOA) estimation and 
denoising filtering. The final outcome is constructing an audio 
signal at the desired virtual listening position, which is called 
Virtual Listening Point Audio Synthesis. In the Free Field 
Acoustic Room Chamber, each speaker represents a sound 
source and a microphone array records the received signals. 
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I.  INTRODUCTION  

In this paper, our main target is to synthesize virtual 
listening-point audio in a real environment. The acoustic signal 
synthesis procedure can be divided into three major steps. The 
first step separates the source signals under the blind condition 
and the second step estimates the source directions (locations). 
The third step synthesizes the new listening-point audio. 

For the first step, we use the blind source separation (BSS) 
technique to separate individual sound source from the mixed 
signals. We model and use the known mathematical tools [1] to 
solve the separation problem. The subspace of interest is 
extracted by the principal component analysis (PCA) method 
[2]. For solving the permutation problem, we adopt [3]. The 
scaling problem is solved by the minimum distortion principle 
(MDP) [4]. There are many well-known BSS methods and one 
of the most popular methods is the so-called independent 
vector analysis (IVA) [3]. The IVA method has different 
learning rules [5] and different properties from the 
conventional ICA methods.  

For the second step, we use the direction of arrival (DOA) 
technique to locate individual sound source from the mixed 
signals. The time difference of arrival (TDOA) is a basic 
concept to explain the technique. It also has to satisfy some 
conditions in order to avoid the spatial aliasing [6]. The DOA 
technique can be solved under the invariant property 
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assumption [7]. We adopt [8] to estimate DOA estimation for 
3-D sources.  

 

For the third step, we separate sources and identify their 
locations using the methods described in the first step and the 
second step. We adopt the software developed by the NASA 
Ames Research Center [9] to synthesize the audio at a virtual 
listening point.  

Because recording the audio signal in a real world 
environment, we also need to consider the noise effect. We 
adopt [10] to reduce the noise in our system. 

II. MIXED SIGNAL MODEL 

In this paper, we use the multiple-input multiple-output 
system to model the sound signals with microphone array, and 
we assume that there is no room reflections and ambient noises 
in an anechoic chamber. Considering the mixture model, we 
convert the time-domain signals into frequency-domain by 
Short-Time Fourier Transform (STFT). Assume the system 
model involves K input signals and N output signals, which can 
be modeled as: 

 ( , ) ) ( , )f t f f tx A( s  (1) 

 ( , ) ( ) ( , )f t f f ty W x  (2) 

1, 2, ,f F   

where F denotes the number of frequency bin; ( , )f tx  and 

( , )f ty  denotes the source signals and the separated signals 

at frequency f; ( )fA is the N K  mixed matrix or also called 

the steering vector matrix; ( )fW is the K N  demixing 

matrix. 

III. ACOUSTIC SIGNAL PROCESSING AND SYNTHESIS 

In this section, we review the BSS technique and DOA 
estimation procedures using the IVA algorithm [3] and ICA-
based algorithm [8]. We also describe the adopted denosing 
method [10] for improving audio quality. 



A. Blind Source Separation (BSS) 

We adopt [3] as the ICA method. The Independent Vector 
Analysis (IVA) method uses a different approach to solve the 
BSS problem by assuming that the source signals have certain 
dependency in the frequency domain. Under this hypothesis, 
the original sources are dependent together as a group by using 
the multidimensional prior. The model is a maximum 
likelihood approach to the multidimensional ICA (MICA), 
which is called independent vector analysis. For BSS problem, 
the main target is to find the demixing matrix ( )fW . 

The ICA algorithm based on IVA consists of two steps. The 
first step is to find contrast function as the input learning 
function. The second step is to choose optimization method. 
Once the contrast function is selected, we can derive the 
separating matrix by selecting the optimization method. [6] 
uses the Newton’s method, which is called FastICA algorithm. 
Here, we assume ( )g   is the input learning function, which 
can be expressed as: 
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where the Lagrange multiplier ( )i f  can be expressed by 
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The function can be approximated by the quadratic Taylor 
polynomial. The optimization of ( )g  will set the gradient 

( )g    to zero. The iterative algorithm becomes as the 

following equation: 
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where 
2 1

( ) ( ) log
2

z
G z F z

f
    with the constraint 

that ( )i fW  are normalized; 'G  and ''G  denotes the first 

order and second order differentials. In addition to 
normalization, the rows of the demixing matrix W  have to be 

decorrelated. The learning rules of W  can be expressed as: 

  
1
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
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It should be calculated by above equation to make ( )fW  

convergent at each frequency bin. 

B. Direction of Arrival (DOA) 

ICA-based algorithm is used to estimate the demixing 
matrix W  in solving the BSS problem. We assemble three 

microphones as a microphone array for estimating the azimuth 
and elevation of the source signal as shown in Fig. 1. 
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Figure 1. Spatial Relationship of a Microphone Array and a Source 

Signal 
 

Considering the mixture model, we convert the time-
domain signals into frequency-domain, and the mixed matrix 
can be expressed as: 
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and  

 1( , , ) ( , , ) ( , , )
T

k k k k k k Nk k kf a f a f     a  (8) 

2
( , , ) exp ( , )

T

nk k k nk k k

f
a f g j r v

c

      
 

 
 (9) 

where ( )fA  is the mixing matrix, whose k -th column 

vector represents the transfer function of the k -th source 

signal, which is the so-called steering vector matrix. The nkg  

denotes the gain of nka , ( , , )T
n n nr x y z


denotes the 

coordinate vector of the n-th microphone, and 

 ( , ) cos cos ,sin cos ,sink k k k k k kv       


represents  

the look direction vector of the k-th signal as shown in Fig. 1. 
Then, we can obtain the equation by dividing two elements [8] 
as shown in following equation: 
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where 
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Then, we extract the angles   and  : 
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C. Audio Denoising 

In a real acoustic environment, the environment 
parameters including the air absorption, the surface reflection 
and microphone intrinsic distortion, and others, all generate 
audio noises. However, in many cases, it is assumed that there 
is no reverberation effect, which is called the single-path 
assumption. We adopt [10] to solve the denoising problem in 
our system. 

Here, the noises are considered to be random variables, 
and they all have corrupted by the additive Gaussian noise. 

Considering the observation iz  of the recorded signals, it can 

be modeled as:  

 i i iz x n   (16) 

where in  denotes a zero-mean white Gaussian random 

sequence and ix  denotes the audio signals. 

There are two adaptive filters to be combined into a 
contextual adaptive Wiener filter [10], which is represented by 
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where  ix  denotes an estimate (filter output) of the i -th 

sample point; ix , 
2
x  and 2

n denote the sample mean, the 

sample variance and the noise variance in a W-size window; 

i  denotes the neighboring element of the i -th sample. And 

[0,1]  . According to the Peak Signal-To-Noise Ratio 

(PSNR) measured in [10], 0.79   is the optimum tradeoff 
value between two adaptive filters. 

D. Virtual Listening Point Audio Synthesis 

Fig. 2 shows the acoustic signal synthesis flowchart. We 
are able to construct the acoustic signal at the desired virtual 
listening position, which is the so-called Virtual Listening 
Point Audio Synthesis. We assume that there are two source 
signals and one microphone array in our experiment. The task 
includes three major steps. First, we adopt [3] to separate the 
mixture signals recorded by the microphone array. Second, by 
employing the IVA method, we can obtain the demixing 

matrix ( )fW . Thus, we derive the steering matrix 

( ) ( )f f A W , where ( )f W  denotes the pseudo-inverse 

of ( )fW . Then, we use the steering matrix ( )fA  and [8] 

to estimate the DOA of two source signals. Third, we select an 
arbitrary point to synthesis the virtual audio in the space.  

Start

One Microphone Arrays

Blind Source Separation by 
Independent Vector Analysis

Direction of Arrival by Demxing 
Matrix Estimation 

Separated Sources

Virtual Listening Point Audio 
Synthesis 

End

Audio Denoising
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Figure 2. Flowchart of 3D Acoustic Signal Synthesis 
 

We adopt the software developed by [9] to synthesize the 
virtual listening point. The software implements the spatial 3D-
sound processing procedure. We perform BSS to separate 
signals from the recorded mixture signals. Then, we take 
separated signals as inputs. Fig. 3 shows the arrangement of 
separated signals and the microphone array on the X-Y plane. 
S1, S2 and Po respectively represent the first source, the second 
source and the position of the original microphone array. θ1, θ2 
respectively represent the azimuth angles of the first source and 
the second source. d1, d2 respectively represent the distances of 
the first source and the second source from the microphone. 
Here, the distances are true outcomes. We then synthesize the 
audio signals at P1, P2, P3 and etc. Thus, we obtain the virtual 
listening point audio signals. 

1 2

 

Figure 3. Schematic Diagram of Audio Synthesis 



IV. EXPERIMENTAL RESULTS 

An anechoic chamber is a room with special walls designed 
to prevent the sound reflection. It can also insulate the outside 
interference or noise. An anechoic chamber is commonly used 
to conduct experiments for simulating “free field” conditions or 
noise reduction.  

For convenience, we move the speech source instead of 
moving microphone array in recording. In addition, we set up a 
source and a sensor at the same horizontal plane in our 
experiments, which means that the elevation angle ϕ is 0o.The 
azimuth angle θ of speech source varies from -30 o to 30 o with 
a 15 o step. It represents that the angles include 30o , 15o , 
0o  with different directions. The set-up of the microphone 
array and the sources is shown in Fig. 4. In principle, the 
estimations would be more accurate when there are more 
sensors. Here, we show test sequences with seven sensors. 

TABLE I.  Experimental Setting 
Sampling rate 8 kHz 
Number of source 4 (two female speech and 

two male speech) 
Frame length 512 
Frame shift 128 
Window function Hamming 
Array spacing 0.03 m 
Room size 4m 4m 4m 

 

 

Figure 4. The Locations of the Sources and the Microphone Array 

A. Blind Source Separation 

In this section, we focus on the effect of input data size, 
that is, we choose different data length of mixture signals to 
test the BSS algorithm. Starting from a small size inputs, 
increasing data size can significantly improve the performance. 
When the input data reach a certain amount, we get less 
improvement. Therefore, we ought to limit data to a proper 
size to reduce delay and processing cost. In our experiments, 
we have one hundred and twenty test sequences. The 
sequences contain ten combinations of  0o  , 15o , 30o . 
Each combination has twelve groups (four sources). There are 
many popular metrics of evaluating the BBS quality, and one 
way is to measure the Signal to Interference Ratio (SIR). 

The data points in Fig. 5 are collected from 120 test 
sequences. The x-axis represents the size of data length 
(sampling rate: 8KHz). According to Fig. 5, we observe that 
the performance of one-second data length, the shortest length, 
is the worst. When the data length increases to two seconds, 
the performance gets better obviously. However, we notice 
that the performance saturates at about four-second data length. 
In other words, when the data length gets beyond four seconds, 
the SIR does not gain much. 

 
Figure 5. Data Length Test with Seven MICs 

 

B. Direction of Arrival 

In this section, we focus on the effect of frequency bins in 
the DOA estimation algorithm. In our experiments, we show a 
case to derive our selection. We measure the estimation 
accuracy by using the mean absolute error (MAE). 

              
(a)                                               (b) 

 
                      (c)                                                (d) 

Figure 6. DOA estimates in various bins (Two Males) 
 

Fig. 6(a)~(b) show the angle estimated at each frequency 
bin for two males. The x-axis represents 256 bins from low 
frequency to high frequency. The bin size is 15.625 Hz 
(sampling rate: 8KHz). The source speeches come from 15 o 
and -15 o. We divide the 256 frequency bins into five 
intervals. Each interval contains 50 frequency bins, and we 
discard the final 16 bins since a typical speech signal 



contains less high frequency components. Fig. 6(c)~(d) 
show the Mean Absolute Error (MAE) corresponding to Fig. 
6(a)~(b). In Fig. 6(a)~(b), we observe that the median 
frequency bins have better estimations. In fact, the situation is 
reasonable. The low frequency has large wavelength. 
Theoretically, the wavelength should be smaller than the 
distance between source and sensor; otherwise, the angle 
(phase shift) cannot be accurately estimated. Furthermore, 
there are also high estimation errors in high frequency bins. 
This is particularly true for two males test sequence. In general, 
the male voice seldom includes high frequency components. 
According to the above discussions, we should avoid using 
low frequencies and high frequencies in DOA estimation. 
Because of the high estimation errors on the elevation angles, 
we do not consider the estimation of the elevation angles. 

C. Audio Synthesis 

In our proposed audio synthesis system, we first perform 
BSS to separate signals from the recorded mixture signals. 
Then, we take separated signals as inputs to SLAB. Fig. 7 
shows the arrangement of separated signals and the 
microphone array on the X-Y plane. Female_1, Male_1 and Po 
represent the original recording layout. They are respectively 
the first separated source, the second separated source and the 
position of original microphone array. The azimuth angles of 
the first source and the second source, estimated by the DOA 
algorithm, are 14o and 14o respectively. Here, we do not 
estimate the distance of the two sources. The distance of these 
sources from the microphone are the true values, 1.5M and 
1.5M respectively. With all the above set-up, we can 
synthesize the virtual listening point audio using SLAB. Fig. 8 
(a)~(d) show the audio signals we synthesize at P1, P2, P3, P4. 
The X-Y coordinates in Table II sent the exact positions in Fig. 
7. 

TABLE II. Spatial Locations 

 Female_1 Male_1 1P  2P  3P 4P

Coordinate (-0.36, 
1.46) 

(0.36, 
1.46) 

( -1, 
1.3) 

(-0.4, 
1.1) 

(0.4, 
1.1) 

(1, 
1.3)

14o14o

 
Figure 7. Locations of Synthesized Audio 

I. CONCLUSIONS 

The main propose of this paper is to synthesis virtual 
listening point audio from the recorded mixture signals in an 
anechoic chamber. For the BSS technique, the BBS quality 

provides the better results when the input data are sufficiently 
abundant. We obtain rather good performance with four-
second data length. For the DOA technique, low frequency 
components are unreliable in DOA estimate because of their 
long period in time. However, the high frequency components 
often have high noise. Therefore, from our statistics, the 
median frequency bins offer more reliable estimates. For the 
denoising technique, this technique can improve the subjective 
hearing quality in the BSS method but does not help in the 
source direction estimations in the DOA method. 

 

 

 
Figure 8. Virtual Listening Point Audio 
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