A Novel Approach for Edge Orientation Determination
Based on Pixel Pair Matching

Hou-Chun Ting and Hsueh-Ming Hang

Dept. of Electronics Engineering
National Chiao Tung University, Hsinchu, Taiwan 300, ROC
Email: hmhang@cc.nctu.edu.tw

Abstract

A novel edge orientation determination algorithm
is proposed. It can detect edges and decide very pre-
cisely their orientations based on a pizel pair match-
ing technique. Three image edge structure measures,
profile diversity, edge convexity and edge continuity,
are designed to facilitate the determination process.
The basic algorithm outputs an integer-pizel orienta-
tion vector for each detected edge and this orientation
vector can be refined to subpizel accuracy by a polyno-
mial fitting method. Simulation results are included to
show the advantages of this approach.

1 Introduction

Many edge detection techniques have been developed
for image processing and computer vision. Accord-
ing to the detection operators used, the edge orienta-
- tion estimation techniques can be classified into two
major groups [1]: (1) employing a pair of orthogo-
nal edge (gradient) operators to detect the directional
edge magnitudes of the input image and then apply
the inverse tangent formula to the two magnitudes;
and (2) correlating the input image with a set of masks
(edge detectors) oriented to some selected directions
and the edge orientation is determined by the mask
having the maximum correlation. In the case of using
the detected edge orientation to re-scale or interpo-
late digital images [2], the accuracy of the detected
edge orientation is very critical (3] because a single
false edge orientation can lead to catastrophic visible
errors in the interpolated image. Different from the
above two classes of techniques, a new algorithm is
proposed to estimate the edge orientation in this pa-
per.

Let 79 be an edge image in the two dimensional
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continuous image space, as illustrated in Fig. 1. An
aperture-sampled discrete edge image can be modeled
nyw+3%

as
Ny w+4
I(n:mny) = / /
nvw-—% nzw—lg—

where n, and n, are the integer coordinates, and w
is the sampling grid length. Three structural features,
edge profile diversity, edge convexity and linkage con-
tinuity, are devised to use in the edge orientation de-
termination process to reduce the probability of the
incorrect edge orientation detection.

In,o(z,y)dzdy, (1)

Figure 1: A simple edge model.

This paper is organized as follows. Section 2 de-
fines the three structural feature measures and ana-
lyzes the discrete edge model statistically. Based on
the statistical analysis, an edge orientation determi-
nation method is developed in Section 3 and further
refined in Section 4. Section § presents the simula-
tion results to show the advantages of the proposed
method. Section 6 concludes this paper.

2 Statistical
Edge Model
Let P, = (I(ng,ny), I(ne — 1,n,)) be an anchor pixel
pair and P, = (I(ng + k,ny +1),I(ny; — 1+ k,ny +
1)) be the sliding pixel pair where the integer k is
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the horizontal shift between them. The edge profile
diversity of two pixel pairs, P and P, is defined as:

(2)

where || - ||¢ is the ¢-norm, V is the gradient, and v
is an adjustable weighting factor which is taken to
be 1 in this study. d(P, ) is an indication of the
similarity between Py and P, including a rough mea-
sure of their shapes (slopes). For example, two par-
allel best-matched pixel pairs straddle the same edge
should have the minimum profile diversity.

(P, Py) =||P1 — Bolle + v |VPL = VB,

Anchor pixel pair P

Sliding pixel pair Pi(n)

Figure 2: An example of the convexity measure with
1=0,j=-2and k= -3.

Next, we invent the convexity measure to exclude
the matched pixel pairs which do not straddle the
same edge. Fig. 2 shows an example which illus-
trates this situation. Based on our observations on
the edge image, we suggest the following proposi-
tion. The convexity constraint demands the pixel
value ¢ being inside the range of d and e; that is,
c € [min{d, e}, max{d, e}]. We thus have

c=ad+{(l—a)e or c=(1-8)d+pBe, (3)
where o + § =1 and 0 < o, < 1. By manipulating
(3), we have o — 3 = 2¢79=¢_ To satisfy the convex-
ity constraint, the four pixels should comply with the
following requirement: 0 < |zc—;_iie;e| < 1. If cis taken
the average of a and b, and substitute the variables by
the pixel values, we have

Nv(PlaPZ)
H(ng —i,ny) + I(ne —i+ k,ny +1) —
I(nz “i+j,ny)_I(n:c ‘i+j)n'y+1)|;

“4)
and
Dy (P, P2) = |I{ns —i+3j,ny) —I(ng —i+4,my +1)|, (5)

where i =0,1and 1<j<kifk>0(ork<j<-1

if k < 0). The convexity measure is defined as

= max max Nu(y, P2)
1=0,1 1<j<k D,,(Pl,Pg)‘

k<i<—1

v(Py, P2) (6)
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As a result, two matched pixel pairs should have a
convexity measure less than 1 if they straddle the same
edge.

Let ¢t (ng,ny) (or ¢~ (ng,ny)) represent the angu-
lar deviation between E (ng,ny) (detected edge orien-
tation at coordinate (ng,ny)) and E(ng+F, ny+1) (or
E(ng —k, ny — 1)). The third feature, edge continuity
measure is defined to be

o(P) = T min{|6* (na )] 6 (e )} (D)

For a valid edge, we assume an edge does not change
direction abruptly, and thus ¢(P;) should be smaller
than a certain value [4].

We first create synthetic images with known edge
information to compute the statistics of the edge fea-
ture measures. Two edge model parameters, h and
0, are defined in Fig. 1. We test edges with 6 = 0
to 360°, 1° apart. The edge orientation 6 is indepen-
dent of the edge magnitude h. Assuming h is known
or detectable, many feature parameters such as edge
magnitude, diversity measure and noise power are nor-
malized to h in our analysis. First, we investigate the
bound of the edge diversity measure. As shown in (2),
the diversity measure consists of two terms. For an
edge obtained by aperture sampling, if P, and P are
on the same edge, VP, and V P, should have the same
polarity around the local edge region. Consequently,
the worst case of this measure occurs when VP, = 0
and its diversity measure is d(Py, P») = 2|V P;|. That
is, 2|V Py | is the upper bound of the diversity measure
for a noise-free edge. Fig. 3 shows the distribution of
the diversity measure versus |VP;| on the synthetic
edge images. Because of the symmetry, the synthetic
images are generated with edge declining angle 6 rang-
ing from 0° to 90° without affecting the results. We
observe that this upper bound is too strict in the prac-
tical cases, especially when |V P;| is larger than 0.3h.
As indicated in Fig. 3, the distribution is divided into
two regions according to the magnitude of g = |VP|
to match the experimental results. The bounds of the
two regions are expressed as

2g, g <03hn

Dlg) = { 06h, 0.3h<g. ®)

In contrast to the diversity measure, (6) shows
that the convexity measure is independent of h. Two
matched pixel pairs should have a convexity measure
less than 1 if the edge orientation is correctly detected.
Since (6) takes the maximum operation on the index
7, the convexity measure is sensitive to noise distur-
bance if the edge magnitude |V P | is too small. How-
ever, this will not be a critical problem because an
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edge with magnitude less than a certain value is often
not considered an edge. The convexity measure should
be less than 1 for two matched pixel pairs along the
edge orientation. Based on this convex constraint, we
conduct the simulation to investigate the missing edge
probability (i.e., the probability that the edge orien-
tation of a significant edge is erroneously detected) by
using the synthetic images generated in the diversity
measure study. Because the existence of an edge is
somewhat subjective, it is difficult to obtain the false
edge probability (i.e., the probability that an insignif-
icant edge or a smooth area is detected as a signifi-
cant edge due to the impaired noise). On the other
hand, the false edge probability depends strongly on
the edge orientation determination algorithm. Fig. 4
shows the effect of the noise power and the edge mag-
nitude threshold Ty on the missing edge probability.
The parameter next to each curve is its corresponding
threshold. A pixel pair is determined to cross an edge
if its pixel difference is larger than the threshold Tj.
It is obvious that the missing probability equals zero
if the test images are noiseless. Increasing the edge
magnitude threshold reduces the missing edge proba-
bility because the higher magnitude edges can tolerate
larger noise. However, the small magnitude edges are
not detected if the threshold is set too high.

3 Edge Orientation Determination Al-
gorithm
Observing the practical simulation results, the convex-
ity measure is found to be a powerful feature for de-
tecting the edge orientation. Unfortunately, the con-
vexity measure is only available for those sliding pixel
pairs located at least two pixels above the anchor pixel
pair, as seen in (6). To cope with this drawback, com-
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Figure 4: Missing edge probability due to convexity
measure.

bining the diversity measure can offer the necessary in-
formation to determine the edge orientation for those
sliding pixel pairs located less than two pixels from
their anchor pixel pairs. As stated earlier, the conti-
nuity measure is a global test. Thus, this feature is not
useful at the local detection stage. It is merely useful
to reduce the false edge probability by post-processing
the detected edges after the local stage. For this rea-
son, the whole algorithm is divided into two stages, as
shown in Fig. 5.

The first local stage preliminarily examines the edge
magnitude of the current anchor pixel pair. If its edge
magnitude is larger than a pre-selected threshold Ty,
continue to check the convexity measure for the nth
sliding pixel pair. L is the total number of the sliding
pixel pairs checked on the sliding line for each an-
chor pixel pair. For those sliding pairs with convexity
measure less than 1, the one having the minimum di-
versity measure is then taken to be the best matched
pixel pair if its diversity measure is less than a quan-
tity dmin. In the meantime, the edge orientation at
the current anchor pixel pair is found to be a vec-
tor (K,1) or (1, K), depending on the anchor pixel
pair is horizontally or vertically oriented. In practice,
the quantity d,,;, is initialized to the diversity bound
given in (8). Therefore, we have dpip = D(|VP|)
as our diversity threshold for a significant edge. Evi-
dently, h in (8) is an unknown parameter but it can be
either detected or set to 255. After completing the lo-
cal stage for the whole image (i.e., the pixel pair index
1 exceeds the total pixel pair number Z of the image),
we proceed to the global stage which uses the conti-
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Figure 5: Edge orientation determination algorithm.

nuity feature to remove the false edges detected in the
local stage. An empirical threshold constant T is cho-
sen to check whether the edge orientation detected for
each pixel pair is correct or not.

4 Edge Orientation Map at Subpixel
Precision

The detected edge orientation vectors produced by the
previous algorithm are confined to integer pixel accu-
racy. The integer-valued vectors is advantageous for
interpolating the digital images for an integer-valued
zooming factor. Additional processing is necessary to
improve the edge orientation accuracy. Based on the
edge profile similarity property of the continuous edge
model, we have

Tho(new, nyw) = Zp g(new + kw, nyw + w),

(9)

if tan# > 1. For convenience, we only discuss the hor-
izontal edge profiles because the vertical ones have the
same property. Let ¥ = K + ¢ where K in the near-
est integer of k and expand (9) by Taylor’s expansion
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along the horizontal axis, we have

Th 0 (naw, nyw) = In o (new + Kw, nyw + w)
0T 6 (nzw + Kw, nyw + w)
w
oz
where R is the insignificant remainder terms in the
expansion. Neglecting the remainder terms, the dis-
crete representation of (10) is

+5-

+R, (10)

OI(n, + K,ny +1)

' oz )
(11)

Approximating the partial derivative by the discrete
first-order gradient, the subpixel correction term of
the edge orientation vector is approximated by
I(ng,ny) — I(ns + K,ny + 1) (12)

Vel(ne + K,ny +1) '

Thus, the estimated edge orientation angle is ex-
pressed as § = tan~! ;{—1—5. We now examine the
proposed algorithm with subpixel correction on the
synthesized images with known orientations. Table
1 summarizes the absolute mean and the root mean
square (RMS) of the estimated displacement error
tanf — tand. Without the correction, the estimated
orientation displacement error is uniformly distributed
between —0.5 and 0.5. As a result, its theoretic mean
magnitude is 0.25 and RMS is 0.29. Including the
correction term (12), the displacement error would be
approximately halved in low noise cases, as indicated
in Table 1. For high noise cases, their difference is re-
duced and the correction term becomes unprofitable.

The orientation accuracy can be further improved
by a polynomial fit of the image intensity around the
anchor pixel pairs. Let the anchor pixel pair and its
two adjacent pixels be represented by a polynomial
of three degrees, i.e., I{(n, + z,ny) = p(z) = azz® +
a222 + a1 + ag. From the four pixel intensity values,
we derive the polynomial coefficients by solving the
following linear simultaneous equations:

} . (13)

-8 4 -2 1 as I(n. —2,ny)
-1 1 -1 1 as
1 1 1 1 ag

I(ne —1,ny)
I ("m"v)
I(ng +1,ny)
Expressing (13) in the matrix form, we have M - a =
b(ng,ny). Clearly, M is nonsingular and the coeffi-
cient vector a equals to M~'b(n, n,). Next we move
to the pixels around the sliding pixel pair with an in-
teger displacement K from its anchor pixel pair. K is
the nearest integer of the actual displacement k£ and
has already been derived by the previous edge orien-
tation determination algorithm. The pixel intensity
value around the sliding pixel pair is thus estimated

I(ng,ny) =I(ne + K,ny + 1)+ 6

S:

as:
b(n. + K, ny +1)
—(d+2)% (d+2)2 —(d+2) 1 as
—(d+1)% (d+1)2 —(d+1) 1 az
—gd a2 _d 1 0y |G
~d-1)® @-1)? —-(d-1) 1 ao



Table 1: Mean absolute (MA) and root mean square (RMS) displacement errors of the detected edge orientation.

SNR noise free 40dB 35dB 30dB 25dB
MA RMS MA RMS MA RMS MA RMS MA RMS
no correction 025 031 026 032 026 032 027 033 028 035
1st order correction - 0.12 0.17 0.13 017 0.14 0.18 0.15 019 0.18 0.23
polynomial correction 0.09 0.13 009 0.13 010 0.14 012 0.15 015 0.19

In the ideal case, b(ng +K,ny+1) = b(ny +K,ny+1)
if d = 8. Therefore, the correction term d should take
the d value which minimizes the mean squared error

J = ||b(ngy + K,ny + 1) — b(ng + K,ny, + 1)||. (15)

J is convex with respect to the d parameter since the
intensity profiles around the two pixel pairs are mono-
tonically increasing or decreasing if they have convex-
ity measure less than 1. As indicated in Table 1, the
accuracy of the edge orientation is further improved
by the polynomial fit method.

5 Simulation Results

As shown in Fig. 6(a), a test image composed of four
pictures has been used in our experiments. They have
different graphical characteristics. The first picture is
a Chinese letter which has many oblique edges. The
second picture is further composed of four small pic-
tures, including two pictures having letters on shading
background and two texture pictures. The third and
the fourth pictures are clipped from the “Lena” and
the “Pepper” pictures, respectively. Fig. 6(b) shows
the edge orientation map of the test image using the
proposed algorithm. In this example the edge mag-
nitude threshold T is set to 20 and the edge angle
threshold T, is set to 0.27. In Fig. 6(b), the horizon-
tal and the vertical edges are marked by white color
and gray color, respectively.

6 Conclusions

In this paper, we propose an edge orientation determi-
nation method based on several local and global edge
properties. The orientation vector candidates of the
detected edgel are chosen by a pixel pair matching
method. Three measures are designed to detect edges
and determine their orientation vectors. The edge ori-
entation precision is further improved by an additional
subpixel estimation step.
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