ADAPTIVE PIECEWISE LINEAR BITS ESTIMATION MODEL
FOR MPEG BASED VIDEO CODING

Jia-Bao Cheng and Hsueh-Ming Hang

Dept. of Electronics Eng., National Chiao-Tung Univ.
Hsin-Chu 300, Taiwan, Republic of China
Email: hmhang@cc.nctu.edu.tw

ABSTRACT

We propose an adaptive piecewise linear bits estima-
tion model whose structure is similar to a tree-structured
piecewise linear filter. Each node in the tree is associated
with a linear relationship between macroblock bits and ac-
tivity/stepsize. The parameters in this tree structure are
adjusted by a modified LMS algorithm. Computer simula-
tion results indicate that the adaptive bits model is able to
precisely estimate the compressed bits regardless how the
image contents vary along time. Also, when compared to
the table-look-up bits model derived based on cluster anal-
ysis, the adaptive piecewise linear bits model has a much
lower complexity to achieve about the same high perfor-
mance.

1. INTRODUCTION

In many video compression applications, it is essential
to control precisely the bit rate produced by the encoder,
for example, in the cases of constant channel rate video
transmission and storage. In a typical motion-compensated
transform coding scheme such as Simulation Model 3 (SM3)
used in the process of defining the international video com-
pression standard, MPEG [2], its output bit rate is mainly
controlled by adjusting quantizer stepsize to avoid buffer
overflow/underflow. The simplest method to decide the
quantization stepsize is based on the buffer status. That
is, set the quantization stepsize small when the buffer is
nearly empty and set the stepsize large when the buffer is
nearly full. However, this control scheme often results in
non-uniform picture quality because 1) it does not have an
overall stepsize plan before execution, and 2) it does not
take image contents into consideration. To achieve a uni-
form perceptual picture quality, we need a stepsize planning
strategy or bits allocation scheme, which pre-analyzes the
entire image content and allocate bits accordingly. In this
approach, the bits model plays an important role in de-
ciding the stepsizes because it predicts the final compressed
bits when a certain quantization stepsize is in use before the
real quantization and variable (word) length coding (VLC)
steps are actually performed. When the predicted bit num-
ber does not match the bits budget, the selected set of step-
sizes have to be altered.
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In order to use one-pass or nearly one-pass coding struc-
tures which cost much less than the multiple-pass coding
structures in hardware, an accurate bits estimation model
becomes very critical. There are two approaches to con-
struct such a model. One is the analytic approach that
derives a mathematical model based on information theory,
for example, the model in [1]. The other approach is to de-
rive an experimental expression based on test data. Because
of the nonlinearity of quantizer and VLC and the variation
of picture contents, it is rather difficult to fully describe
an accurate and self-adaptive bits estimation model based
only on mathematical theory. The experimental approach
is taken in this paper. We propose an adaptive piecewise
linear bits estimation model whose structure is similar to
a tree-structured piecewise linear filer [4, 5]. Each node
in the tree represents a linear relationship between image
(macro)block bits and activity /stepsize. The parameters in
this relationship can be adjusted by a modified LMS (least
mean squares) algorithm. Simulation results show that due
to its tree structure this bits model has a rather fast adap-
tation speed even in the case of scene changes. In addition,
compared to the bits model derived based on cluster anal-
ysis, the adaptive piecewise linear bits model has a much
lower complexity to achieve about the same high perfor-
mance.

2. ACTIVITY MEASURES

The activity function is a measurement of image con-
tents complexity; a high activity value indicates a hard-to-
compress image (block). Several types of activity functions
have been proposed. For example, the measure could be
calculated based on the variance or the absolute value of
DCT coefficients of an image block. It was reported that
the activity measure based on the absolute values of the AC
coefficients is relatively accurate [3]; hence, it is adopted
here as follows: ACT =) | AC coefficient |.

Using the activity function defined in the above, the
number of coded bits per (macro)block is almost propor-

tional to the activity measure and is nearly inverse-proportional

to the quantization stepsize. An empirical first-order bits
model is thus derived:

ﬁz:m*ACT

+mn, 1)

where BIT is the estimated coded bits, ACT is the activity



measure, ( is the quantization stepsize, and m, n are two
constants derived from training data to minimize a selected
error criterion. There are two main drawbacks of this simple
first-order model. One, the parameters, m,n are picture-
dependent; and two, the linear expression becomes less ac-
curate outside a certain range of ACT and @. To enhance
its performance, we need to develop an adaptive scheme
to adjust the parameters from time to time. Also, instead
of a single model that covers the entire range of interests,
we partition the data space (ACT, Q) into segments -and
design parameter sets for each segment separately. There-
fore, a tree-structured piecewise linear model is adopted, in
which a tree structure is used to combine several linear bits
estimation models, each corresponding to a selected range
of (ACT, Q) values and the parameters of each linear model
can be adjusted after each macroblock being coded.

3. ADAPTIVE BITS ESTIMATION MODEL

The tree-structured piecewise linear filter is first pro-
posed for adaptive equalization in digital communication by
Gelfand et al. [4, 5]. Each tree node is associated with a
linear filter and a corresponding threshold value is chosen
to partition the domain of the filter. The filter coeflicients
and the threshold at each node are updated by the modified
LMS algorithm. Through sequential and hierarchical parti-
tioning of the input space, this approach is computationally
efficient and converges rather rapidly as compare to many
other nonlinear adaptive filters. A typical example of the
tree-structured piecewise linear filter for our application is
illustrated in Fig. 1 and explaired below.

To construct a tree-structured piecewise linear filter, we
specify three elements: a tap weight vector ¢, an offset de,
and a threshold 8; for each node in the Tree T'. Let x be an
input data vector, then node t is associated with a linear

filter

9
where y; is the filter output at node ¢. The final output of
this piecewise liner filter is defined by

ct'x +dy,

yr = Yi=,

where t* is the terminal node in the tree 7" obtained through
the following process. We start from the root node and use
the rule

y: > 0:, go to r(¢)

¥t < 8¢, go to I(2),

where r(2) is the right child stemmed from node ¢ and, sim-
ilarly, {(t), the left child. Therefore, each node in a tree
corresponds to a filter with inputs restricted to a polygonal
domain denoted by x:. In general, the filter output y; at
the node ¢ is determined by the filter weight ci and the off-
set d¢, whereas the domain y; is determined by the weights
¢, offsets d., and thresholds ¢ of all the ancestor nodes s
of node t.

The above piecewise linear filter can be made adaptive
by updating the filter input domain and the filter coeffi-
cients when new samples arrive. That is, the values of ¢¢,
d¢, and 8, are adjusted by applying the least mean squares
algorithm (LMS) to the input data sequentially [4, 5].
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In the proposed adaptive piecewise linear bits estima-
tion model, each node in the tree is associated with a first-
order macroblock bits model restricted to a certain range
of ACT/Q values. In other words, the filter output y now

represents the estimated bits BIT in our bits estimation
model. The input vector x now has the form of ACT/Q (a
scalar) and the coefficient vector ¢ and the offset d are now
parameters m and n, respectively. Our adaptive bits esti-
mation algorithm is similar to the original adaptive filter
algorithm except for the initialization.. To. ensure a rea-
sonable initial performance, we initialize each node in the
tree with the same parameters that are derived from the
constant coefficient first-order macroblock bits estimation
model obtained off-line by the method described in Sec. 2.

The adaptive algorithm for piecewise linear bits estima-
tion model is summarized below.

<Initialization:> )
Let mo be the slope and no be the bias term of the initial
macroblock bits model.
We initialize each node in the tree by:

Pt(o) = EF:WTY)

m¢(0) = mo , n:(0) = no , 6:(0) =0,
where p; is the probability of the input domain associated
with node t.

< Updating:>
Let (BIT(k), —A—gi(k)) be the (k+1)-th arriving coded data
pair. Assume BIT:(k) = m.(k)2ZL (k) + ns(K).
Propagate the data sample from the root node to a terminal
node of T' according to the rule:

BIT: > 6, go to r(1)

BIT, < 6., go to I(t).
If the data sample passes through node ¢, then its associ-
ated parameters are updated:

pe(k +1) = pe(k) + u(1 = pe(k)) -

me(k+1) = me(k)+ iy (BIT (k)= BIT (k) 255 ()

ne(k +1) = n(k) + H(—;:—‘m(BIT(k) — BIT(k))

Oe(k+1) =6:(k) + E(—,-t‘_(_—l)-(BIT(k) —0:(k)).
Otherwise, the above parameters remain the same except
that

pe(k + 1) = pe(k) — ppe(k).
4. ADAPTIVE BITS ALLOCATION

We now describe how the adaptive bits estimation model
works together with bits allocation policy. The problem of
bits allocation is to distribute bits to each macroblock prop-
erly so that the following two goals can be achieved: (1) the
total coded bits should meet the bits budget, and (2) the
perceptual quality of every coded image block should be al-
most equal. The above two requirements lead to following
two additional problems: (1) how to come up with an ad-
equate bits budget for each picture frame and (2) how to
decide the coded image perceptual quality for every block.
We do not attempt to solve these two additional problems
here, but rather, for a given bits budget and a given picture
quality measure, we want to allocate bits to each block so
that the total coded bits would match the pre-assigned bits
budget.



The bits allocation problem can be solved by a multi-
pass approach that simply tries several promising quantiza-
tion stepsizes for each image block to find the best stepsize
that generates the desired bits. Each iteration (pass) com-
prises quantization and VLC operations performed on ev-
ery image block. Although it could be rather accurate, this
approach requires a large amount of computations. The
one-pass approach is to predict the quantization stepsize
based upon a bits model. If the bits model used is quite ac-
curate, the results could be close to those of the multi-pass
approach at a much lower computational complexity. The
operation of our bits model consists of two modes: estima-
tion mode and updating mode. In the estimation mode, the
appropriate quantization stepsize is sequentially searched
from the root node to the terminal node in the tree and the
estimated bits number is the output of the terminal node.
The best estimated stepsize is the one that produces the
estimated bits closest to the bits budget. Then we use the
estimated stepsize to quantize the current macroblock. In
the updating mode, the bit estimation error which is the
difference between the coded bits and the estimated bits is
used to update the piecewise linear bits estimation model.

There are three main advantages of using the tree-structured

filter structure. First, the piecewise linear filter is clearly
superior to the single linear filter in solving nonlinear prob-
lems. Second, since the tree structure employs standard
linear adaptive filtering techniques at each node, it is sim-
pler than many other nonlinear adaptive filters such as
polynomial filters. Third, the most important feature of
the tree-structured adaptive algorithm is that it provides
“piecewise” adaptation. It means that when each training
sample arrives, we update the parameters of the nodes by
passing through a data-dependent path from the root node
to a terminal node. As a result, only one component fil-
ter (terminal node) in the filter bank (that makes up the
entire piecewise linear filter) should be modified, and the
other component filters remain unchanged. In the mean-
while, the updating process modifies slightly the domain of
the corresponding filter and those of its neighbors’. Hence,
the whole process is relatively simple but effective. Since
the bits model is gradually dominated by the arriving coded
macroblocks, the influence of the far-away coding samples
becomes less important.

5. SIMULATIONS

Computer simulations have been conducted to evaluate
the performance of the proposed bits estimation scheme.
The error bits are defined as the difference between the
coded bits and the estimated bits for each macroblock.
Since the coding behavior is rather different for I-frame, P-
frame, and B-frame in MPEG?2 coding, three tree-structured
bits estimation models are constructed for each of them sep-
arately. In Fig. 2, we first show the error bits for every
macroblock without and with adaptation for the I-frames
in encoding the video sequence flowergarden In the cases of
“without adaptation” we simply use tree constant-coefficients
estimation models with coefficents trained off-line using the
same data. It is clear from this figure that the adaptive
piecewise linear bits estimation model decreases the error
bits significantly. Similar results are obtained also for P-
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frames and B-frames.

In Fig. 3, we demonstrate the adaptation capability of
the adaptive piecewise linear bits estimators when scene
change occurs. In the middle of the test sequence, the scene
changes from flowergarden to football. The robustness of
the adaptive bits estimators is due to their rapid and good
adaptation capability. Therefore, suboptimal model param-
eters can be used as the initial values of this piece-wise linear
model without degrading its long-term performance. Table
1 is the average error bits per macroblock with/without
adaptation. It shows that the piecewise linear bits estima-
tion scheme can cope with the variations of image sequence
in real-time coding.

Although the above simulation results demonstrate the
advantages of the adaptive bits estimation model over the
constant coefficient model, we like to make one more com-
parison against a rather complicated but potentially bet-
ter approach. This new bits estimation scheme is designed
based on clustering analysis. First, we collect the data pairs
in the form of (BIT,ACT/Q) and generate a table that
contains the representatives of these data pairs using the
K-means cluster algorithm. This table is called TABLEL,
and its entries are denoted by (Tbllprr, TblY sc7/g). Sec-
ond, we expand the dimension of each entry in the TA-
BLEL into the form of (T012p;7, Tb2 ac1, Thl2g). At this
stage, each and every coding data triplet (BIT, ACT, Q)
is compared against TABLE1 to find the best matching
entry using the MSE measure. Then we obtain a new ta-
ble with entry (TblZBIT,TbIQACT,TbIQQ), where Thl2grT
and Tbi2 scr are the average bits and activity values of all
the coding data triplets classified to the same table entry
(Tbliprr, Thll sc7/g) and quantization stepsize Q. This
new table is called TABLE2. Table 2 shows the average
error bits by using this approach with different table sizes.
Compared to the simulation results in Table 1, the adap-
tive bits estimation model not only approaches the same
performance limit but also use much lower memory than
the table-look-up method. In addition, it is not easy to
design adaptive method for the table approach. Therefore,
the proposed adaptive bits estimation model is superior to
the pre-trained clustering/table method.
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sequence I-frm P-frm - B-frm

w/o [ with || w/o | with || w/o | with

flowergarden || 149 | 60 83 39 54 43

football 80 53 123 78 109 63

flower+foot 146 57 107 58 74 52

Table 1: The average prediction error bits/macroblock of
test images with/without adaptation.

TABLE1 | TABLE2 || flowergarden football
size size I | P| B I | P| B
16 480 83 |65 |50 72|78 73
32 960 68 | 43 | 35 |} 57 | 63 | 58
64 1920 63 | 41 | 40 | 61 | 70 | 66
128 3840 67 | 40 | 43 || 67 | 70 | 69

Table 2: The average prediction error bits/macroblock us-
ing clustering/table method.
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Figure 1: A tree-structured piecewise linear filter.
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Figure 2: The prediction error bits/macroblock of I-frame
(a) using constant-coefficient linear model, -and . (b) using
adaptive piecewise linear model. :
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Figure 3: The prediction error bits/macroblock -at scene
change (a) using constant-coefficient linear model, and (b)
using adaptive piecewise linear model.



