
MULTIVIEW ENCODER PARALLELIZED FAST SEARCH REALIZATION ON NVIDIA

CUDA

Chih-Te Lu
1
 and Hsueh-Ming Hang

1,2

1
Dept. of Computer Sci. and Inform. Technology, National Taipei University of Technology,

Taipei, Taiwan
2
Department of Electronics Engineering, National Chiao-Tung University, Hsinchu, Taiwan

ABSTRACT

NVIDIA announced a powerful GPU architecture called

Compute Unified Device Architecture (CUDA) in 2007,

which is able to provide massive data parallelism under the

SIMD architecture constraint. We use NVIDIA GTX-280

GPU system, which has 240 computing cores, as the

platform to implement a very complicated video coding

scheme, the Multiview Video Coding (MVC) scheme. MVC

is an extension of H.264/MPEG-4 Part 10 AVC. It is an

efficient video compression scheme; however, its

computational compexity is very high. Two of its most time-

consuming components are motion estimation (ME) and

disparity estimation (DE). In this thesis, we propose a fast

search algorithm, called multithreaded one-dimensional

search (MODS). It can be used to do both the ME and the

DE operations. We implement the integer-pel ME and DE

processes with MODS on the GTX-280 platform. The

speedup ratio can be 89 times faster than the CPU only

configuration. Even when the fast search algorithm of the

original JMVC is turned on, the MODS version on CUDA

can still be 20 times faster.

Index Terms— Multiview video coding (MVC),

H.264/AVC, motion estimation, disparity estimation,

parallel, CUDA, GPU, Multi-core, fast search algorithm

1. INTRODUCTION

The deployment of 3D techniques in recent years has

increased remarkably. As the technology of 3DTV [1] and

free view point TV (FTV) [2] is getting more and more

mature, the Multi-View Video Coding (MVC) technology

becomes one of crucial IT industry components. In a 3D TV

system, the scene is recorded by two or more cameras and

then it is compressed, transmitted and displayed on a 3D

display. Another scenario is the free viewpoint television, in

which a camera array is employed and a (3-D) scene is

synthesized at any 3-dimensional virtual viewpoint. Thus,

the user has the freedom to select his/her preferred viewing

position. However, the multi-camera techniques not only

increase the demand for bandwidth but also increase greatly

the complexity of encoding.

To achieve a good coding efficiency for a wide range

of applications, including free view point television and 3D

television, the video coding standard H.264/MPEG-4 Part

10 was defined by the JVT (Joint Video Team, jointly by the

ITU-T and ISO/IEC). The Multi-view Video Coding (MVC)

technique inherits the coding tools from AVC and

furthermore combines temporal/inter-view predictions,

where images are predicted from temporally neighboring

images and spatially related images in adjacent views.

In recent years, there has been a significant progress in

the development of graphics processing units (GPUs). The

NVIDIA GPUs are capable of performing non-graphics

computations using the NVIDIA’s C-like CUDA

programming interface. Several articles have published on

using CUDA for H.264 encoding [3][4][5]. All of these

approaches targeted at parallelizing the full search block

matching algorithm (FSBMA). For example, in [3], using

CUDA to implement the FSBMA for motion estimation,

Chen and Hang were able to achieve about 12 times faster

than using the PC CPU only. However, few research

projects try to parallelize a fast search algorithm on CUDA

due to the limitation of the GPU architecture. Often, a fast

algorithm eliminates ineffective calculations by checking

certain termination criterions, which produces conational

branching instructions. Unfortunately, the early termination

criteria do not match the GPU architecture because the

SIMD processors have to synchronize all concurrently

executing instructions. Also, branching instructions and

memory access latency, for example, often introduce

hardware idling. To achieve the full utilization of all

processors in a GPU, we need to modify the conventional

algorithms to reduce the hardware idling time. Our

contribution in this study is to design a highly parallel fast

search algorithm, so-called multithreaded one-dimensional

search (MODS) that can take the advantages of the CUDA

SIMD structure.

2. COMPUTER UNIFIED DEVICE ARCHITECTURE

2.1. Hardware Architecture of GT200

As a computation device, a single GT200 is composed of 30

Streaming Multiprocessors (SM), each of which consists of

8 32-bit Scalar Processor (SP) cores for single-precision

floating-point mathematical functions, 2 special function

units (SFU) for a bevy of unusual functions (such as sin,

cosine, etc) and a 64-bit SP core for double-precision

floating-point mathematical functions.

2.2. Programming Model

In programming CUDA, the GPU code is compiled into the

instructions, called “kernel”. Invoked by the CPU, the kernel

is loaded to the GPU that acts as a coprocessor to the CPU.

It is executed by the mechanism of “thread blocks”, which

are composed of “threads”. Generally, the kernel function is

executed by thread blocks in parallel. In runtime, a thread

block is assigned to an SM by hardware scheduler. All

threads within this thread block are scheduled to SPs or

SFUs within the assigned SM. When a thread block is

finished in an SM, the scheduler quickly allocates the

next thread block that needs to run on that SM. In this

way, the GPU can be more productive as long as there is

enough parallelism to keep them busy.

3. MVC ENCODER ACCELERATION BY CUDA

3.1. Multithreaded One-Dimensional Search

The main contribution of this paper is to implement a fast

motion search algorithm on CUDA. The known previous

CUDA implementations all use the exhaustive (full) search

to maximize parallelism. We modify an existing fast

algorithm and modify it so that it can fit into the CUDA

SIMD structure. We call this scheme “multithreaded one-

dimensional search (MODS)”. It is based on the parallel

hierarchical one-dimensional search (PHODS) proposed by

Liang-Gee Chen et al [6]. PHODS is designed to reduce the

number of sequence steps and search points. Using the

principle of PHODS, we design the MODS that has a regular

control flow and fixed instructions for each iterative process.

Hence, each iterative process can be independently executed

by a different thread in parallel so that it matches the SIMD

model. The search procedure of MODS is described by

using the psudocode as follows:

x = -search range; // macroblock location on the x-axis

For-loop (; x < search range; x++) { // in parallel

y = 0; // macroblock location on the y-axis

y = MinSad (y, y±4, y±8, y±12); // the first step

y = MinSad (y, y±2); // the second step

candidate[x] = MinSad (y, y±1); // the third step

}

MV = MinSad(candidate[±search range]); // in parallel

Fig. 1 is used to illustrate the operation of MODS. We

assume that the search range is 8. The first step is to

calculate all y1 locations. Next, the one with the least sum of

absolute difference (SAD) is as the searching center for the

second step. The second step is to compute all y2 locations.

Same as the first step, the one with the least SAD becomes

the searching center for the third step. In the third step, we

can choose the least SAD position among all y3 locations.

After the search along y axis is done for a fixed x location,

the best y is identified along the vertical line for each x

location. The last search is performed on all the (x, y)

candidates obtained from the previous step. At the end, the

best overall candidate with the least SAD is the chosen

motion vector (MV).

To implement the MODS scheme on CUDA, a thread

block composed of many threads processes a motion search

of a macroblock. The MODS is executed N times in parallel

by N different threads within a thread block. In general, the

value N is decided by the search range. The mapping of the

search steps to threads is shown by Fig. 2.

Fig. 1. (a) Search for the best y along the vertical line with

the x = -8. After three steps, the point labeled by y3 with the least

SAD is the best point. (b) Search for the best y along the vertical

line with the x = -7. After three steps, the point labeled by y3 with

the least SAD is the best point.

3.2. Maximizing Parallel Execution

In JMVC (Joint Multi-view Video Coding) software [7],

macroblocks of each frame are encoded in a raster scan

order. Thus, it processes a motion search of a macroblock

sequentially. If we implement MODS using CUDA with the

original JMVC processing flow, it is unable to achieve the

full utilization of SMs. Since a thread block processes a

motion search of a macroblock, it only actives an SM to

execute a thread block at the same time.

In order to maximize the number of concurrently active

SMs, we modify the original processing flow, as depicted in

Fig. 3. We design a MV search module using CUDA to

obtain the MVs of all macroblocks within a frame. Then, the

rest of operations (including RD cost calculation, mode

selection, etc.) are still done in the original flow. Due to this

modification, all macroblocks within a frame are available

simultaneously for scheduling on running on to free SMs.

The parallel macroblock processing structure is illustrated

by Fig. 4.

Fig. 2. (a) All vertical lines are searched in parallel in a

thread block. (b) The results of (a) are compared in a thread block

for finding the final motion vector.

3.3. Encoder Implementation

In JMVC, a range of block sizes (from 16x16 down to

4x4) is supported. Depending on block sizes, we

implement seven corresponding kernel functions, which

calculate the MVs in the MV search module. In each

kernel function, every thread block processes a motion

search of a macroblock in parallel. The total number of

thread blocks in each kernel function is:
_ _

_ _
_ _

frame width frame height
threadblock num macroblock num

macroblock width macroblock height
= × =

For example, if the frame_width is 640 and frame_height is

480, the number of thread blocks in the 16x16 kernel

function is:
640 480

_ 1200 16 16 _ _
16 16

threadblock num macroblcok num= = × = ×

The number of 16x16 macroblocks in a frame is 1200

and they are processed by 1200 thread blocks in parallel.

Every thread block uses the MODS algorithm to

concurrently search for a macroblock MV. After the search

process finishes, a 16x16 kernel function produces 1200

MVs (of 1200 macroblocks) within a frame.

The dimension of a thread block depends on the search

range. Adopting a fairly large search range to include more

MV candidates, we set 128 threads (T0 ~ T127) in a thread

block to handle ± 64 one-dimensional search. After all

searches are done, 128 threads produce 128 candidates and

put them into the on-chip shared memory for the next

candidate reduction process. In this reduction process

adapted from [8], each thread compares a pair of candidates.

The smaller one is stored back to the shared memory so that

it keeps only half of candidates for the next iteration. This

process is repeated until the final winner (best MV) is

obtained.

Fig. 3. (a) shows the original flow (b) shows the modified

flow. The original inter prediction in (a) is divided into two

procedures in (b).

MB: macroblock TB: thread block

Fig. 4. All motion searches of all macroblocks within a frame

are concurrently executed by thread blocks in a kernel. Since the

number of thread blocks in a kernel equals to the number of the

macroblocks in a frame, this arrangement is schedulable for a free

SM.

4. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed algorithm on

CUDA, the following development environment and

parameters are used: (1) Intel Core 2 Quad 2.4 GHz Q6600 ,

(2) NVIDIA GeForce GTX-280, (3) Ubuntu Linux 9.04, (4)

g++, (5) CUDA Toolkit and Driver 2.2, (6) JMVC search

mode: Fast Search (EPZS) with search range 32, (7) CUDA

search mode: MODS with search range 64, (8) Motion

search with RDO: off, (9) GOP size: 8, (10) Frame to be

encoded: 65, (11) Basic QP: 24,28,32,36.

The ballroom (640x480), and the exit (640x480) both

are 8-view MPEG test sequences. In Table 1, the point to

observe is that the PSNR drops are below 0.007dB in

average cases. However, we save 1.013% on the average

bit rate. Table 2 describes the speedup ratio of MODS on

CUDA and it also shows the performance comparison

between EPZS [9] and MODS on CUDA. Our scheme is

about 88 times faster than the MODS on PC only in all

cases. Next, the performance comparison between the

original fast search of JMVC and MODS on CUDA is

highly dependent on whether the DE is applied to them.

Generally, the speedup ratios are about 18~20x when

both DE and ME are in use.

The overall encoding with MODS on CUDA can get

approximate 4 times faster than the PC-only version.

Compared with the original JMVC encoder, the proposed

encoder has the 31%~49% time saving. Since only the

integer-pel ME and DE parts are executed on CUDA.

The rest of encoding task is done by PC, and the speedup

of the overall encoding time is not included.

In [5], the proposed ME speedup is about 1.9 times

as compared to EPZS. Our proposed ME provides a 9~17

times speedup as compared to EPZS. Although different

platforms contribute part of our additional gain, the

highly parallel studture of our scheme significantly helps

in improving the overall perforamance.

5. CONCLUSION

This paper presents a parallel fast search algorithm

that can be effectively implemented on NVIDIA CUDA.

This scheme, so-called Multithreaded One-Dimensional

Search (MODS), can be used for both motion estimation

(ME) and disparity estimation (DE) in the MPEG MVC

encoder. It is proposed to overcome the software design

challenge of a multi-core processor. We demonstrate that

the GPU acting as a coprocessor can effectively

accelerate the massive data computation. Experimental

results show that with GPU, the ME and DE processes

with MODS can be 89 times faster than its counterpart

on the PC entirely. When the fast search algorithm, EPZS,

of the JMVC coder on PC is turned on, the MODS

version on CUDA can still be 20 times faster. Compared

with the original JMVC encoder, the proposed encoder

has a minor coding quality loss of only 0.001–0.026 dB

in PSNR.

Table. 1. Rate-Distortion comparison between proposed

encoder and original encoder

Sequence DPSNR(db) DBR(%)

Exit -0.006 ~ -0.026 -0.809 ~ -1.353

Ballroom -0.001 ~ 0.002 -0.619 ~ -1.319

Table. 2. Performance comparison of the motion search

Sequence
Speedup of MODS

using CUDA

Proposed (MODS) vs

Original (EPZS)

Exit 86~89x 9~18x

Ballroom 87~89x 12~20x

6. ACKNOWLEDGMENT
This work was supported in part by the NSC, Taiwan under

Grants 98-2221-E-009 -076 and 98-2219-E-009 -015.

7. REFERENCES

[1] A. Smolic and P. Kauff, “Interactive 3-D video representation

and coding technologies,” in Proc. IEEE, vol. 93, no. 1, pp. 98–

110, Jan. 2005.

[2] T. Fuji and M. Tanimoto, “Free-Viewpoint TV Systems Based

on Ray-Space Representation,” in Proc. of SPIE, vol. 4864, pp.

175-189, Nov. 2002.

[3] W. -N. Chen, H. -M. Hang, “H.264/AVC motion estimation

implementation on Compute Unified Device Architecture

(CUDA)”, IEEE International Conference on Multimedia and

Exposition, Hannover, pp. 697-700, 2008.

[4] B. Pietersa, C. F. Hollemeersch, P. Lambert, and Rik Van de

Walle, “Motion Estimation for H.264/AVC on Multiple GPUs

Using NVIDIA CUDA”, SPIE, San Diego, vol. 7443, 2009.

[5] Y.-L. Huang, Y.-C. Shen and J.-L. Wu, “Scalable computation

for spatially scalable video coding using NVIDIA CUDA and

multi-core CPU”, Proceedings of the 7th ACM international

conference on Multimedia, Beijing, pp. 61-370, 2009.

[6] L.-G. Chen, W.-T. Chen, Y.-S. Jehng, and C.-T. Church, “An

efficient parallel motion estimation algorithm for digital image

processing,” IEEE Trans. Circuits and Systems for Video Tech, vol.

1, pp. 378–385, Dec. 1991.

[7] Y. Chen, P. Pandit, and S. Yea, “WD 4 reference software for

MVC,” ISO/IEC JTC/ISC29/WG11 and ITU-T Q6/SG16, Doc.

JVT-AD207, Jan. 2009 (JMVC).

[8] Mark Harris, “Optimizing Parallel Reduction in CUDA,”

NVIDIA Developer Technology, 2007.

[9] Tourapis, H.-Y. Cheong; Tourapis, A.Michael, “Fast motion

estimation within the H.264 codec”, IEEE International

Conference on Multimedia and Exposition, July 2003.

