
Advances in Multimedia Information Processing – PCM 2002, pp. 344-352, 
Springer-Verlag, Dec. 2002. 

MPEG IPMP Concepts and Implementation 

Cheng-Ching Huang1, Hsueh-Ming Hang2 , and Hsiang-Cheh Huang2 

Department of Electronics Engineering, National Chiao-Tung University,  
Hsinchu, Taiwan. 

1cchuang.ee89g@nctu.edu.tw 
2{hmhang, huangh}@cc.nctu.edu.tw 

Abstract. Intellectual Property (IP) protection is a critical element in a multi-
media transmission system. Therefore, ISO/IEC MPEG started the IP protec-
tion standardization project on MPEG-4 a few years ago. A basic IPMP (Intel-
lectual Property Protection and Management) structure and interface was first 
defined in its System part. In this paper, we will first outline the MPEG-4 basic 
IP protection mechanism and then describe our simulation of an MPEG-4 IPMP 
system. An IP protection application is constructed using the MPEG-4 system 
software – IM1 (Implementation Model one). This application includes a client-
server program, in which a client can request the keys from a server in a secure 
way using a hierarchical key distribution structure.  

1   Introduction  

With the rapid development in computer industry and the swift growth of Internet, 
there is a widespread use of the digital multimedia contents in our daily life. The pro-
gress in data compression techniques also makes transmission of multimedia data 
stream possible. However, Internet is an open environment, therefore, if the user data 
and information are not protected, it might be illegally used and altered by hackers. 
To protect privacy and intellectual property (IP) right, people often use cryptographic 
techniques to encrypt data, and thus the contents protected by encryption are expected 
to be securely transmitted over the Internet. 

One requirement of typical multimedia applications is the demand for real-time 
transmission. In contrast, conventional security methods are often designed to protect 
digital data files, which might not be suitable and efficient for real-time applications. 
To fulfill the demands for both real-time distribution and data security, including the 
IP protection mechanism into the multimedia standard might be a feasible and effec-
tive way to achieve an unambiguous communication environment. 

MPEG (Moving Picture Expert Group) is the ISO committee to set up the interna-
tional standards for multimedia data exchange. MPEG-2 has been applied to digital 
video broadcasting with some access control specifications [1][2]. IPMP (Intellectual 
Property Management and Protection), proposed for MPEG-4 standard, aims at pro-
tecting the compressed multimedia. In this paper, we will describe and implement a 
multimedia transmission system using the MPEG-4 IPMP concepts. 



 2 

This paper is organized as follows. Sec. 2 is an overview of the MPEG-4 System 
and IPMP standards. Sec. 3 describes the IPMP plug-ins in the MEPG-4 System ref-
erence software “IM1.” Sec. 4 describes the procedure of constructing the MPEG-4 
IP plug-ins and an application example is included. Sec. 5 concludes this paper. 

2   MPEG-4 Standard Overview and IPMP Framework 

MPEG-4 is an international standard defined by the ISO/IEC committee. Compared 
to it predecessors, MPEG-4 pays more attention on the following three subjects: (i) 
real-time streaming, (ii) object-based coding, and (iii) enriched user interaction. 

MPEG-4 standards contain 10 parts. The portion related to IP protection is in the 
first part, Systems. The IPMP framework in ISO/IEC 14496 consists of a normative 
“interface” that permits an ISO/IEC 14496 terminal to host one or more IPMP sub-
systems. An IPMP sub-system is a non-normative component of terminal, which pro-
vides several intellectual property management and protection functions. At the mo-
ment, MPEG committee is refining and extending the MPEG-4 IPMP specifications. 
A Message Router mechanism is to be added into the third Amendment of 14496-1. 

In the MPEG-4 standards, the IPMP interface consists of IPMP elementary streams 
and IPMP descriptors. The IPMP elementary streams usually convey time-variant in-
formation such as keys associated with the encryption algorithm, which may change 
very rapidly. IPMP descriptors often convey time-invariant information associated 
with a given elementary stream or a set of elementary streams. IPMP elementary 
streams are treated as regular media elementary streams. And the IPMP descriptors 
are transmitted as part of an object descriptor stream. 

Fig.1 shows how an IPMP sub-system works in an MPEG-4 terminal. Almost all 
the streams may be controlled or accessed by the IPMP sub-system but the Object 
Descriptor streams shall not be affected by the IPMP sub-systems. 

Stream flow controller is a conceptual element that accompanies with every ele-
mentary stream. Stream flow controller can take place between the SyncLayer de-
coder and the decoder buffer. As Fig. 1 indicates, elements of IPMP control can take 
place at other points in the terminal. For example, they can appear after decoding (as 
in the case with watermark extractors). 

3   IPMP in IM1 

IM1 is an MPEG-4 Systems software developed by the MPEG committee. It may be 
used to verify and demonstrate the functionalities of MPEG-4 [4]. 

The Systems Core module in IM1 defines the infrastructure to implement MPEG-4 
players. It provides the functionality of MediaObject, the base class for all specific 
node types. The API for Decoder, DMIF and IPMP plug-ins is also supported by 
IM1. Moreover, the code is written in C++, which is fairly platform-independent [5]. 
 



 3 

Audio DB
Audio

Decode

IPMP DB

Video DB
Video

Decode Video CB

C
om

posite

Elementary Stream Interface

BIFS DB

Audio CB

IPMP System(s)

OD DB OD
Decode

BIFS
Decode

IPMP-ES

Decoded
BIFS BIFS Tree

IPMP-Ds

DMIF

D
M

U
X

Possible IPMP
Control Points

R
ender

 
Fig. 1. IPMP sub-system in the ISO/IEC 14496 terminal architecture [3] 

3.1   IPMPManager 

In IM1, IPMP sub-systems are implemented by extending the IPMPManager class. 
IPMPManager is an interface between MPEG-4 player and the IPMP sub-system. Each 
media content access unit goes through the sub-system before it is stored in the de-
coding buffer. An implementation of IPMPManager can decrypt the encrypted content 
and thus block the unauthorized access to the media content. 

IPMPManagerImp extends the IPMPManager interface, and it provides the major 
functionality of an IPMP sub-system. Simple implementations need to overload a few 
setup functions and the Decrypt() function, which decrypts one access unit using one 
IPMP stream. More complex implementations, for instance, when multiple IPMP 
streams are used to decrypt a single elementary stream, may overload the Run() func-
tion and implement different data flows by directly accessing the MediaStreams. 

IPMP plug-ins interact with the core codes of the player through a special kind of 
buffer, known as MediaStreams. An IPMPManager object fetches an access unit, which 
is a kind of media, from one MediaStream object. After decrypting an access unit, it 
will dispatch one decrypted access unit into an output MediaStream object, which usu-
ally is a decoding buffer [6]. 

3.2   IPMPManagerImp 

IPMPManagerImp extends the IPMPManager interface. It is the base class of all the 
IPMP sub-systems. IPMPManagerImp provides all the needed functions of a regular 
IPMP sub-system.  

Each IPMP sub-system runs on its own thread. An IPMP sub-system is usually at-
tached to three MediaStream objects – the encrypted input stream, the decrypted output 
stream, and the IPMP stream. According to the SDK [6], the workflow of a typical 
IPMP sub-system is shown in Fig.2. Our design procedure is modified from that in 
[6] and is outlined below. 



 4 

Video
Decode

Video CB

C
om

positor

BIFS DB

OD DB OD
Decode

BIFS
Decode

Decoded
BIFS BIFS Tree

Video DBVideo DB
DMIF

D
M

U
X

R
enderer

IPMP DB IPMP System(s)IPMP-ES
IPMP-Ds IPMP

Control Point

22

3
4

 
Fig. 2. A typical IPMP sub-system workflow 

 
 
1. An object derived from IPMPManagerImp is instantiated by the IPMP sub-system 

module (usually a Dynamic Link Library, or DLL). 
2. The  application  calls  IPMPManager::SetInputStream()  and  IPMPManager::Set 

OutputStream() to attach input and output MediaStreams to the IPMP sub-system. 
3. The application calls IPMPManager::SetIPMPStream() to attach an IPMP stream 

to the IPMP sub-system. This function may be called more than once if the ele-
mentary stream is protected by multiple IPMP streams. 

4. The application calls IPMPManager::SetDescriptor() for each IPMP descriptor as-
signed to the elementary stream. 

5. The application calls IPMPManager::Init() to initialize the IPMP sub-system and 
to confirm that the user has access to the protected elementary stream. 

6. The application calls IPMPManager::Start(), which spawns the IPMP sub-system 
thread. 

7. The IPMP sub-system thread fetches an access unit from the input stream and the 
corresponding access unit from the IPMP stream. Note that one IPMP access unit 
can control multiple content access units. 

8. The IPMP sub-system calls a private virtual function, Decrypt(). This function is 
overloaded by specific IPMP sub-systems and performs the actual decryption. 

9. The output of Decrypt() is stored in the output MediaStream. 
10. Steps 7-9 are repeated until IPMPManager::Stop() is called by the application, or 

until reaching the end of the input stream. 
Some of these steps have been implemented in IPMPManagerImp class, but in some 
special cases, we need to re-implement them again. 

3.3   MediaStream 

MediaStream class handles the buffering and synchronization of an elementary stream. 
It manages the memory buffer and fetch/disfetch access units from the buffer. The 
stored access unit maybe has time stamp on it. The current solution is to fetch the ac-



 5 

cess unit immediately and ignore the time stamp, fetch the matured unit only, or oth-
erwise suspend. 

4 Constructing an MPEG-4 IPMP Application Example 

We will implement and demonstrate a multimedia transmission system with MPEG-4 
IPMP by incorporating modern cryptographic techniques [7]. In designing the sys-
tem, we adopt the Conditional Access (CA) concept by using a hierarchical key dis-
tribution structure as shown in Fig. 3. 

In this system, we encrypt only the bitstreams in the TRIF files. The server gener-
ates and embeds the keys into the bitstream. When the keys are correctly retrieved, 
the decoded and decrypted video sequence can be played properly. Otherwise, the 
bitstreams cannot be decoded successfully. 
 

Client,
MPEG-4 IPMP

System
Server

Diffie Hellmen Key Agreement
K

D
H

K
D

H

AES AES-1EAES[KC]

KC pool KC pool

KC KC

K
C

K
C

DES / XOR (DES / XOR)-1EDES/XOR[Content]Content Content

Random Sorce

 
Fig. 3. The hierarchical key distribution structure 

4.1   System structure and handshaking protocol 

Our hierarchical key distribution system is illustrated by Fig. 3. At the upper level, we 
use the Diffie-Hellmen Key Agreement [8] that enables both the client-end and the 
server-end to securely retrieve the Session Key, KDH, over the Internet. By applying 
the Advanced Encryption Standard (AES) [9], KDH can serve as a secret key to en-
crypt KC, and the encrypted KC are then transmitted. The use of KC is to serve as the 
key for the bottom layer encryptor. In our example, the contents to be encrypted are 
the compressed video, audio, or image bitstreams. Similar to the CA system in DVB, 
we achieve the security requirement by changing KC frequently. The throughput of 
KC is so high that we need a KC pool to generate the keys constantly. 
 



 6 

request

accept

client_key_exchange

server_key_exchange

Tim
e

Encrypted by AES

Client Server

user_name

cont_number

Diffie-Hellmen
Key Agreement

block_length

key_length

key_period

ask_for_key

KC

Loop until end

end_of_service

 
Fig. 4. The handshaking protocol 

 
One of the most important elements of our system is the handshaking protocol. 

Fig. 4 shows the basic steps in establishing a connection between the client-end and 
the server-end. The procedure is stated as follows. 
1. Client sends request = 0x31403 (4 bytes). 
2. Server sends accept = 0x31403 (4 bytes). 
3. Client and server proceed with the Diffie-Hellmen key agreement; all the forth-

coming information will be encrypted with AES by this key. 
4. Client sends user_name (44 bytes) and cont_number (4 bytes), representing the user 

name and content number, respectively. 
5. Server sends block_length (2 bytes) and key_lengh (2 bytes) to initialize the encryp-

tor, and key_period (1 byte) to tell the bottom layer encryptor the lifetime of KC. 
6. Client sends ask_for_key = 0x5327 (4 bytes) to ask for a new key from the server. 

Server sends a new KC to client after receiving ask_for_key. 
7. Client sends end_of_service = 0x0 (32 bytes) to terminate the handshaking. 

4.2   The client-end IPMP plug-in 

The player is the “IM1 2D player” executed under the Windows environment. Hence, 
the IPMP plug-in can be implemented with the DLL file in Windows. 



 7 

There is one implementation of IPMP plug-in in IM1 core called IPMPNull. It works 
like a buffer to send the input MediaStream directly to the output side. Based on the 
existing IPMPNull program, we implement two new IPMP plug-ins in our system: 
IPMPXOR.dll and IPMPDES.dll. They are essentially two encryption methods. The first 
plug-in conducts the XOR operation between the received bitstreams and the key at 
the decryptor, a very simple encryption technique; the second one uses the DES [7] 
scheme for decryption. 

In the MPEG-4 design, the IPMP stream is used to transmit keys. In our example, 
we transmit the key using TCP/IP, not DMIF, to avoid the incompatibility between 
our example system and the standard system. 

The first step to implement IPMPDES is to create an IPMPDES class, and it inherits a 
class called “IPMPManagerImp.” Then, we implement the SetDescriptor() function. 
The IPMPDescriptor within the TRIF file contains the information of the server loca-
tion and the content identification number that is to be played. The SetDescriptor() 
function uses the above information to make a connection to the server and to initial-
ize the decryptor locally. Next, we implement the Decryptor() function, which can 
decrypt the received MediaStream, and count the number of times KC is used. 

Figs. 5(a) and 5(b) are the demonstrations of two IM1 2D players. The video se-
quence is coded in the H.263 format. The bottom-left bitstreams in both figures are 
decrypted by IPMPXOR, and the ones on the bottom-right are decrypted by IPMPDES. 
The sequences on the upper side are not protected in both Figs. 5(a) and 5(b). In Fig. 
5(a), we assume that the key can be reliably transmitted and received. Hence, the two 
encrypted bitstreams can be decrypted and displayed successfully. In Fig. 5(b), the 
keys are not retrieved. Thus, the encrypted bitstream cannot be decoded and dis-
played.  
 

 
(a) (b) 

Fig. 5. Demonstration of the proposed system: the unprotected bitstreams (upper) and the pro-
tected bitstreams (lower).  (a) Correctly retrieved keys, and (b) keys not retrieved 

4.3   The server-end 

The server can be divided into two parts, one is the encryptor and the other part is re-
sponsible for sending keys. Fig.6 is a screenshot of the server-end application. We 
write it in C++ and it is a DOS command-line program. But the GUI is done in Java 
using the pipes stdin and stdout. 



 8 

 

 
Fig. 6. The server that can turn on/off keys 

 
5 Conclusions 
 
In this paper, we first briefly describe the MPEG-4 IPMP system concepts. We then 
analyze the IPMP API in the reference software of the MPEG-4 Systems – IM1. After 
studying the IM1 Core and its IPMP API, we implement a functional IPMP sub-
system by modifying IPMPNull – a prototype of the IPMP sub-system.  

We use the hierarchical key architecture to construct an application example, fol-
lowing the MPEG-4 IPMP concepts. Our example simulates the functionalities sug-
gested by the standard. We demonstrate that the MPEG-4 IPMP is a practical way for 
protecting the multimedia content.  
 
6   Acknowledgement  
This work was supported by National Science Council (Taiwan, ROC) under Grant 
NSC 90-2213-E-009-137. 
 
References  
1. ISO/IEC 13818-1 Generic Coding of Moving Pictures and Associated Audio Information: 

Part 1 Systems (ISO/IEC JTC1/SC29/WG11 N0801rev), April 1995. 
2. H. Benoit, Digital Television, MPEG-1, MPEG-2 and Principles of The DVB system, Ar-

nold, 1997. 
3. ISO/IEC 14496-1:2000(E) Coding of Audio-visual Objects: Part 1 Systems (ISO/IEC 

JTC1/SC29/WG11 N3850), October 2000. 
4. ISO/IEC JTC1/SC29/WG11 N4291, MPEG Systems (1-2-4-7) FAQ, Jul. 2001. 
5. ISO/IEC JTC1/SC29/WG11 N4709, MPEG-4 Systems Software Status and Implementation 

Workplan, March 2002. 
6. ISO/IEC JTC1/SC29/WG11 M3860, IPMP Development Kit, Aug. 1998. 
7. B. Schneier, Applied Cryptography, 2nd edition, John Wiley & Sons, 1996. 
8. PKCS #3: Diffie-Hellman Key-Agreement Standard, An RSA Laboratories Technical Note, 

ftp://ftp.rsa.com/pub/pkcs/ascii/pkcs-3.asc. 
9. J. Daemen and V. Rijmen, AES Proposal: Rijndael (corrected version), 

http://www.esat.kuleuven.ac.be/~rijmen/rijndael/rijndaeldocV2.zip.  


