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Abstract— In the virtual-view 3D video coding system, both the 
RGB image data and the depth maps are compressed and 
translated to the receivers. After compression, the depth maps are 
distorted and may cause visible artifacts on the synthesized video. 
We study the visual effect of compressed depth maps on the 
synthesized video and develop a quality assessment model that 
predicts the subjective quality. We use HEVC Test Model (HTM) 
to compress the depth maps. The distorted depth value may lead 
to ghost artifacts around object edges and unnatural object 
motion on the synthesized video. In our proposed quality 
assessment (QA) model, we use SSIM to compute the basic score 
of stereo image pair; we extract the edge, motion, and depth 
features of stereo pairs and combine them to form a local weight 
to increase the sensitivity of the noticeable regions. We use the 
binocular perception model to calculate the score of stereo pairs. 
We conduct our own subjective tests. The results of our 
experiments show that our model has a better match to the 
subjective scores when it is compared with the other existing 
metrics. 

I. INTRODUCTION 
The 3D perception is often made by viewing two different 

views in two eyes, and then they are combined by the Human 
Visual System (HVS). The ISO/IEC Moving Picture Expert 
Group (MPEG) is in the process of specifying the 3D video 
coding (3DVC) standards based on the multiple-view plus 
depth (MVD) format. It assumes the input is a 2-view (or more 
views) video, and each view has its corresponding depth map, 
which can be captured by depth sensors or generated by a depth 
estimation algorithm. These color and depth images are then 
compressed by a 3D video coder. At the receiver, the virtual 
view images are generated by a view synthesis algorithm. 
Either the transmitted views or the synthesized views and their 
mixtures can be displayed on a 3D monitor. With the 
popularity of 3D virtual view systems, how to predict the 
quality of the synthesized stereo images becomes an important 
issue. 

In recent years, several research groups studied the 3D 
quality assessment topic and some of them provide their 
database to the public on the website. For different purposes of 
the 3D QA research, these databases can be classified into a 
few categories. For example, the focus of Benoit et al. [1] is on 
the color distortion. They compress images or videos by JPEG 
and JPEG2000 or blur images to observe their effect on the 
subjective scores. Lavoue et al. [2] work on the quality 
assessment for 3D computer graphics. Two types of distortion 
(noise addition and smoothing) were applied with different 
strengths and on 4 reference objects. Goldmann et al. [3] 

capture the nature scenes with a static camera at different 
camera distances in the range 10-50 cm. Bosc et al. [4] use 
different synthesis algorithms to recreate images. There are 
seven synthesis algorithms on three sequences. In this paper, 
we interest in the effect of distorted depth map on the synthesis 
video. Because our target is different from the previous ones, 
we construct our own test database which consists of six scenes. 
We use the test videos provided by the ITU/MPEG 
standardization committee for specifying the Advanced Video 
Coding (AVC, H.264) and High Efficiency Video Coding 
(HEVC, H.265) 3D standards. The depth maps are compressed 
by HTM (HEVC Test Model-8.0) and use the original color 
images and compressed depth maps to synthesis the virtual 
view image/video. The synthesis software is VSRS (View 
Synthesis Reference software 3.5). 

In this paper, we propose a new visual quality assessment 
(VQA) model based on our collected data to assess the visual 
quality of synthesized video, of which the depth map is 
distorted by compression. The metric uses the extracted 
features and their combination with different weighting, so that 
the artifacts can be properly addressed. We provide 
experimental results on the proposed method, and demonstrate 
that the proposed scheme can improve the correlation between 
the score of the computational QA model and the subjective 
scores. 

In this paper, we first introduce briefly the depth coding 
principles and the artifacts caused by distorted depth maps in 
Section II.  Section III is the proposed computational objective 
model. Section IV is the results of subjective experiments. 
Finally, Section V concludes this presentation.    

II. DEPTH CODING AND ARTIFACTS CAUSED BY DEPTH 
ERROR 

In the HTM depth coding process, there are three kinds of 
prediction models (intra-prediction, motion-compensated 
prediction and disparity-compensated prediction) [5]. The 
depth maps are quantified and divided into coding blocks with 
different sizes. Each block chooses the prediction model that 
has the least Rate Distortions cost (RD cost). After the 
quantization process, the coding blocks are divided into smaller 
blocks until the RD cost of the original block size is less than 
the sum of RD costs using the smaller blocks. The motion-
compensated prediction and disparity-compensated prediction 
code the blocks by using the information of other coded frames. 
Unlike the color pixel coding, specific techniques have been 
developed for depth value coding. Limited by space, we only 
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(a)  (b)                          

Fig.1 the example of (a) Planar mode (b) Wedgelet Mode  

describe briefly two intra coding modes. They are Planar Mode 
(1 segments) and DMM Mode 1 (2 segments). The purpose is 
to give readers some ideas of the sources of compression 
distortion.  
A. Planar Mode 

If the coding blocks are grouped into one segment, they 
are considered as the smooth regions. The Planar Mode saves 
only the four depth values at each corner and uses the corner 
information to interpolate the other depth values of each pixel 
in the block. In Fig. 1 (a), the Planar Mode saves the depth 
value of the four corners (0,0), (0,7), (7,0) and (7,7), and then 
interpolates the other values in the block. 
B. Explicit Wedgelet Mode 

In the edge regions, the block will be partitioned into two 
segments. The Wedgelet Mode saves the four values at the 
corners and the start and end point of the segmentation line 
(boundary). It then uses the segment mean value to represent 
all the pixels in one segment. The mean value of each segment 
is computed based on the mean depth value of corners 
belonging to it. Clearly, using the mean value to represent the 
other values is imprecise. A Depth Lookup Table (DLT) is 
formed to compensate the residual values to match the original 
depth values. In Fig. 1 (b) , the Wedgelet Mode  saves the 
depth value of four corners (0,0), (0,7), (7,0), (7,7), and the 
start and end point of the segment line (1,7) and (7,3). The 
mean value of segment 1 (dark color) is the mean value of 
(0,0), (0,7) and (7,0). On the other hand, the mean value of 
segment 2 (light color) is the depth value of (7,7). 

     The incorrect depth value causes the shifting phenomenon 
in viewing, because the image may be warp to wrong positions. 
As shown in Fig. 2 (a), the P1 and P2 represent the projection 
paths of the object into the camera 1 and the camera 2, and the 
P is the projection path of the virtual camera. They all have the 
same depth values assuming all he cameras are in parallel. If 
the depth values associated with P1 and P2 have coding errors, 
then Fig. 2 (b) shows that object is closer to the virtual camera 
in the case of a smaller depth value. On the image plane, the 
object location x is changed to location x’. The difference 
between x and x’ causes the shift artifact, as illustrated by Fig. 

2 (c). An example of this artifact on the synthesized image is 
showed in Fig. 3. 

The shift artifact could result in the unnatural movement in 
a video. If the depth value of the object in the previous frame 
is different from that in the current frame. The object positions 
on the image plane are thus shifted. It looks like that the object 
moves forward or backward. This problem usually appears in 
the moving regions, because the foreground objects move into 
or out the coding blocks, which causing the large changes of 
depth values at the four corners used in coding. As the block 
uses the Planar mode to coding, the edge of foreground and 
background is blurred. Therefore, the same object may have 
different depth values between frames. 

III. COMPUTATIONAL QA MODEL 
In our subjective experiments, we asked every viewer to 

identify the regions with annoying artifacts. We check the 
answered regions against the Structural Similarity (SSIM) 
metric map [6]. SSIM can easily detect the region of the shift 
artifacts. However, not all shift artifacts can be easily detected 
by human. An example is given in Fig. 4. (b) and (d) are the 
typical shift artifacts, which can easily be detected by human. 
Fig. 4(f) contains the shift artifacts on the road portion (Fig. 
4(e)). Fig. 4(g) shows the SSIM scores. Although the SSIM 
detects the artifacts (dark regions), they are hard to be 
observed by human. These regions have heavily distorted 
depth maps. However, these regions are smooth, and the shift 
artifacts are less noticeable to the human. On the other hand, 
the SSIM is calculated pixel-by-pixel, and they are sensitive to 
object shifts. Thus, we use the edge information as one of our 
features.  

(a)                              (b)                              (c) 
Fig. 2  (a) Correct depth;  (b) Incorrect depth;  (c) Combine (a) and (b). 

(a)                     (b)                       (c)                      (d) 
Fig. 3 (a) Reference image; (b) Reference depth map;  
(c) Distorted depth map; and (d) Synthesized image. 

 
Fig. 4. (a) (b) (c) (d) are the examples of significant shift artifacts. 
(e) (f) is the example of less obvious shift artifact.  
(a), (c) and (e) are the reference images. (b), (d) and (f) are the synthesized 
images. (g) is the SSIM map between (e) and (f). 
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In addition to the above two cases, there are other cases 
that the obvious artifacts are less noticeable. For example, 
people pay less attention to the faraway background. 
Therefore, many 3D quality assessment models also consider 
the depth information as an important factor. Thus, our second 
feature is the depth information. The last feature of our model 
is motion. Because people usually pay attention to large 
moving objects and the unnatural movements easily get 
attention. We use these three features to compute the local 
weights of each local region. 

Our proposed QA model is divided into two parts. The 
first part computes the SSIM of the stereo video, and the 
second part is generating weightings for each extracted local 
features of video. The proposed method computes the score of 
each frame and combines them into a representative score of 
the entire video. For each frame, we divide an image into 8-
by-8 blocks, and the Structural Similarity (SSIM) metric and 
the feature extraction are performed inside these 8-by-8 blocks. 
We then combine the scores of right and left view into the 
score of a frame. The flow chart of our proposed model is 
shown below (Fig. 5). 

This SSIM metric was proposed by Wang, et al. [6]. The 
SSIM index consists of three components: luminance, contrast 
and structure.  Lሺx, yሻ ൌ ௬ߤ௫ߤʹ  ௫ଶߤଵܥ  ௬ଶߤ  ଵܥ , Cሺx, yሻ ൌ ௬ߪ௫ߪʹ  ௫ଶߪଶܥ  ௬ଶߪ  ଶܥ , Sሺx, yሻ ൌ ௫௬ߪʹ  ௬ߪ௫ߪଷܥ  ଷܥ 				ሺͳሻ	SSIMሺx, yሻ ൌ ሾlሺx, yሻሿఈሾCሺx, yሻሿఉ 	ሾSሺx, yሻሿఊ  ,                       (2) 
where x and y are the reference and distorted image, 
respectively. The luminance, contrast, and structure can be 
computed by combining the means, standard deviations, and 
correlation coefficient of the images. Finally, the overall 
image quality is evaluated from the average SSIM. 

The edge factor is extracting by the “Sobel” edge detector 
applied to the depth map. The map after edge detection is 
edge(x,y). We define the number of edge as the factor of edge.  Eሺݑ, ሻݒ ൌ ଵ଼ൈ଼∑ ݁݀݃݁ሺݔ, ሻሺ௫,௬ሻ∈ሺ௨,௩ሻݕ                       (3) 

The (u,v) pair is the index of blocks in each frame, and (x,y) is 
the index of pixels in a block. Each edge(x,y) is assigned with 
value 1, if this pixel (x,y)  belongs to an edge. Otherwise, its 
value is 0.  

The motion factor is extracted by a 4-level hierarchical 
block matching algorithm. Each level down-sample the test 
image by a factor of 2, and the search method is the four-step 

search. The block size is 8-by-8. The motion vector map stores 
the motion vector magnitude, motion(u,v) as defined below. ܯሺݑ, ሻݒ ൌ ൝ Ͳ																	; if		݉݊݅ݐሺݑ, ሻݒ ൏ ௧ௗଵ௧ሺ௨,௩ሻ݊݅ݐ݉ ; 																			otherwise																								 (4) 

First, we classify the entire image into motion and non-
motion regions. For each block, if the motion(u,v) is less than 
the threshold, it is classified as non-motion, and the motion 
factor is 0. Second, we take into account the ghost and 
afterimage issues. In Fig. 4 (c)(d), the ghost artifact is easily 
detected if they are in the non-motion images. However, the 
ghost artifacts are similar to the afterimages in the video. It 
less noticed if the object speed gets higher. Thus, we define 
the motion factor as the reciprocal of the motion magnitude.  

The depth information is generated by the depth estimation 
methods. We compute the disparity to estimate the perceptive 
depth value. Eq.(5) shows the relationship between disparity 
and perceptive depth.  				ܼ ൌ ݂  ሺͷሻ																																									ݕݐ݅ݎܽݏ݅݀ܶ
The disparity gets bigger, the object becomes closer. So, the 
disparity factor D(u,v) is defined to be the disparity(u,v). 

After extracting all feature factors, we combine three 
factors into a set of local weighting for each frame. The total 
weight is computed by (6). wሺu, vሻ ൌ Ƚ ൈ Eሺu, vሻ  Ⱦ ൈ Mሺu, vሻ  γ ൈ Dሺu, vሻ								ሺሻ 
The definitions of Ƚ, Ⱦ and γ are given below: Ƚ ൌ ଵೌೣ ,			Ⱦ ൌ /బெೌೣൈ/బ ߛ				, ൌ /బೌೣ                    (7) 

We normalize all features by their maximum values separately 
to the range [0 1]. The motion estimation is pixel based, so the 
motion feature is affected by the resolution of sequence and 
the frame rate. To deal with this effect, we multiply the ratio 
of h and ݄ and  ݂ݎ and fr, individually, where h is the picture 
height, and fr is the frame rate. In our test sequences, ݄ is 768, 
and  ݂ݎ is 30. The disparity weight also needs to be adjusted 
by the sequence height. The final score of each block in ith 
frame is:  ݁ݎܿݏሺݑ, ሻݒ ൌ ௪ሺ௨,௩ሻൈ௦௦ሺ௨,௩ሻభ∑ ௪ሺ௨,௩ሻሺೠ,ೡሻ∈ೝೌ                          (8) 

To calculate the score of a stereo image pair, we 
incorporate the Binocular Perception Model [7] into my model. 
For this model, the subjective 3D image quality is determined 
by the mixture of the higher and lower quality images. The 
equation of Binocular Perception Model is as follows: ܳ௨ ൌ ൛ݓ ∙ ܳ  ሺͳ െ ሻݓ ∙ ܳ௪ ൟభ             (9) 

In our experiment, w is set to 0.86 and n is 1. We 
compare the score of each block in the right image with that 
of the corresponding left image block, and the bigger one is  ܳ  , and the other is  ܳ௪ . Compute all the scores of 
stereo block pairs in a frame and use the average of the 5% 
worst block scores in a frame to form the score of this frame. 
Finally, we compute the average of all frames in a sequence 
to form the final score of this stereo video.  

 
Fig. 5. The flow chart of the proposed model. 

GlobalSIP 2014: Perception Inspired Multimedia Signal Processing Techniques

1056



 

V.  EXPERIMENT RESULTS 
In our experiments, we focus on the effect of distorted 

depth maps. We only compress the depth maps and use the 
original color images to synthesis the virtual images. To 
reduce the effect of synthesis algorithms, the reference videos 
are produced also by the same synthesis algorithm using the 
original depth maps. 

TABLE I.  THE SUBJECTIVE TEST SETUP. 

Participants 26 people (man 19/woman 7 /age: 
20~25) 

Methodology Double Stimulus Continuous impairment 
Scale (DSIS) [8] 

Sequence  Six multi-view plus depth sequences 
provided by MPEG 3DVC 

Type 5 levels of quantization parameters 
(QP=16, 27, 36, 43, 48) 

Number of 
test video 5*6=30 

We first conduct the subjective video evaluation. The test 
set up is summarized in Table I. In our experiment, we add 
some dummy sequences to test the reliability of subjective 
scores. The dummy sequences are the repeating sequences or 
the reference to reference sequences. If some participants give 
different score to the same test video or give the lower score to 
the reference sequence to reference sequences, the entire data 
sets of these participants are dropped. 

We compare the performance of our model with four 
metrics (PSNR, SSM, MSSIM, VIF(Visual Information 
Fidelity)). And we use the PLCC, SROCC and RMSE to 
evaluate the performance of all metrics. To remove the effect 
of nonlinear relationship on computing the correlation 
coefficient, Video Quality Experts Group (VQEG) Full 
Reference Television (FRTV) Phase II report [9] recommends 
a process that measures the performance of the objective QA 
metric and we follow this process. 

TABLE II.  THE QA MODEL COMPARISON. 
 PLCC SROCC RMSE 

PSNR 0.7173 0.85 1.6006 

SSIM 0.5956 0.7597 2.0173 

MSSIM 0.5682 0.8008 2.0476 

VIF 0.7067 0.7539 1.7080 

Proposed 0.9280 0.8460 0.7440 

As Table II indicates, our QA model is better than these 
existing models except that our SROCC values are slightly 
lower than that of PSNR.  

VI. CONCLUSIONS 
In this paper, we propose a computational quality 

assessment model to estimate the quality of distorted video 
synthesized by a distorted depth map. We observe some 
special phenomena that do not occur in the conventional 3D 
video not generated by a virtual view synthesizer. In our 
proposed model, we extract edge, motion and depth features to 
compute the local weighting and thus enhance the effect of the 
“noticeable” regions with visible artifacts. Overall, we propose 
a new 3D video quality metric. The experimental results 
indicate that the proposed method has a higher correlation 
with the subjective scores (higher PLCC and lower RMSE 
score). 
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Fig 6 The structure of DSIS
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