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ABSTRACT 
In this paper, we use a digital signal processor (DSP) to imple-
ment a real-time H.263+ codec. We use fast algorithms to reduce 
the codec computational complexity. Furthermore, the C programs 
are modified to take advantages of the DSP architecture and its C 
compiler features to reduce the on-chip memory and to increase 
the processing speed. In addition, a simple but effective rate-
control algorithm is implemented to maintain the target bit rate. 
We can encode about 20 QCIF frames/second using one TI DSP. 
And the average decoding speed is about 26 QCIF frames/second. 

1. INTRODUCTION 

With the growing popularity of multimedia demand, video trans-
mission over wireless network becomes very desirable in the near 
future. Because of the limited bandwidth of wireless channel, video 
signals have to be highly compressed. ITU-T H.263+ [1] is a speci-
fication for video compression targeting at very low bit-rate appli-
cations. Our codec is developed based on the H.263+ simulation 
software provided by Telenor Research and University of British 
Columbia [2]. 

 

 

 

 

 

 

 

 

 
 
 

Figure 1. Block diagram of the basic H.263+ encoder [3]. 

Figure 1 shows the basic H.263+ encoder. The key elements are 
motion-compensated prediction, discrete cosine transformation 
(DCT), quantization, and variable-length coding (VLC). Motion-
compensated prediction is used to remove temporal redundancy. 
The purpose of DCT and quantization is to reduce spatial redun-
dancy. The VLC technique reduces syntax redundancy. All to-

gether, H.263 needs a very low bit rate, 64K bits/s or less, to 
transmit videophone type pictures. Because of high computational 
requirement of motion-compensated prediction and DCT, we use 
fast motion search algorithms and fast discrete cosine transforms to 
achieve real-time implementation. 

The TI TMS320C62xx fixed-point DSP has a rather good per-
formance. Its instruction cycle time is 5 ns (200 MHz clock). It 
adopts the advanced VelociTI very long instruction word (VLIW) 
architecture that enables sustained throughput of up to eight in-
structions in parallel and thus allows the processor running much 
faster. Therefore, the maximum computation power is 1600 million 
instructions per second (MIPS).  

This paper is organized as follows. Section 2 describes the fast 
algorithms we use, diamond search, DIF DCT. Rate control algo-
rithm is described in Section 3. In Section 4, the DSP implementa-
tion techniques and results are presented. Finally, a summary is 
given in the last section. 

2. FAST ALGORITHM 
2.1 Diamond Search 

The full search algorithm for motion estimation examines all 
search points inside the search area. Therefore, the amount of its 
computation is proportion to the size of the search area. Although 
it finds the best possible match, it requires a very large computa-
tional power. Hence, many fast algorithms are proposed to reduce 
computation at the price of slightly performance loss. The basic 
principle of these fast algorithms is dividing the search process into 
a few sequential steps and choosing the next search direction ac-
cording to the current search result [6]. 

The diamond search algorithm [7] starts with zero-vector candidate. 
Then, it moves to the most promising search point and does an-
other search after the current step is completed. This procedure is 
repeated until it cannot move further and the local optimum is 
reached. The diamond search assumes that the matching function is 
monotonic along any direction away from the optimal point. But in 
reality the monotonic matching function assumption is sometimes 
invalid and thus the diamond search algorithm is suboptimal [6]. 

The procedure of the diamond search is described below. 
Step 1: Compute the sum-of-absolute-difference (SAD) be-
tween the current macroblock and the same location macrob-
lock in the previous reconstructed frame, called SAD0. This 
value is the prediction error when the current macroblock is 



 

predicted using the zero-vector. Then, we set the current best 
vector (0,0) to be the search center. 
Step 2: Four search points are chosen to center around the cur-
rent best vector in a shape of diamond as shown in Figure 2. 
Their locations are (-1,0), (0,1), (1,0), (0,-1), respectively. Then, 
we compute the SAD of every search point and compare them 
to SAD0. If SAD0 is the minimum, the center represents the 
best motion vector, stop; otherwise, continue. 
Step 3:  Move the search center to the best vector that has the 
minimum SAD computed in Step 2 and replace SAD0 with this 
SAD value. Then, go to Step 2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. An example of diamond search procedure [11] 
 
Figure 2 shows an example of the diamond search. Each stage 
contains four search points and a central point. They are all labeled 
by the same number. Three stages are presented in Figure 2. The 
central point moves to the right in the second stage. Then, it moves 
to the top in the third stage. 

2.2 Decimation-In-Frequency (DIF) DCT 

The original DCT algorithm in the software uses the sparse matrix 
factorizations. It requires 26 real additions and 16 real multiplica-
tions for an 8-point DCT. The amount of computation is not large, 
but this process is non-recursive and needs a complicated index 
mapping [8]. These two disadvantages leads to a serious delay in 
DSP implementation. Therefore, we need another fast DCT algo-
rithm. The DIF DCT algorithm requires about the same number of 
additions and multiplications comparable to the original algorithm. 
But its process is recursive and needs only a moderate index map-
ping. So it fits better to the chosen DSP. 

The key concept of the DIF DCT algorithm is to divide an N-point 
DCT to two N/2-point DCTs by rearranging of the input samples 
in the frequency domain. This concept results in a desirable recur-
sive modularity of a fast decomposition. In our case, an 8-point 
DCT is decomposed into two 4-point DCTs. This method divides a 
DCT process into two parts with equal computing load when im-
plemented on the DSP. Therefore, the DSP compiler can optimize 
the for-loop with ease. Moreover, this algorithm also can save 
three-fourths of the DCT code size. A 2-D 8-point DCT is obtained 
by computing two 1-D 8-point DCT along horizontal and vertical 
axes. The forward and inverse DCT used are specified in [8].  

Because our DSP arithmetic unit uses fixed-point operations, float-
ing-point computations are very inefficient when we implement 
DCT on this DSP. Therefore, we convert this floating-point algo-

rithm to a fixed-point one. We multiply Ck by 214. Then, we round 
these values to their nearest integers. We use the new Ck to com-
pute DCT and then divide the final DCT coefficients by 214. The 
multiplication and division of 214 are realized simply by left-shift 
and right-shift by 14 bits on the DSP. It increases nearly no addi-
tional load. However, this fixed-point algorithm has the accuracy 
problem. 

 H.263+ Annex A specifies the desirable inverse transform accu-
racy [1]. We use it to examine the fixed-point DIF DCT, the float-
ing-point DIF DCT, and the fixed-point original DCT. (We modify 
the original DCT into the fixed-point DCT in a similar manner as 
described in the above.) The results are shown in Tables 1 to 3. 
Annex A specifies that the overall mean error should not exceed 
0.0015 in magnitude and the overall mean square error should not 
exceed 0.02. The floating-point DIF DCT satisfies this specifica-
tion, but the fixed-point DIF DCT and the fixed-point DCT cannot 
meet the specification due to rounding errors in the fixed-point 
computing process. The errors are accumulated and propagated to 
the next frames in the interframe coding. Therefore, frames become 
blurred if we encode a number of P-frames (inter-coded frames). 

 

Data Range Overall Mean Ab-
solute Error 

Overall Mean 
Square Error 

L=256,H=255 0.861547 1.589669 
L=5,H=5 0.854330 1.545261 

L=300,H=300 0.734516 1.354213 
Table 1. The accuracy of the fixed-point DIF DCT 

Data Range Overall Mean Ab-
solute Error 

Overall Mean 
Square Error 

L=256,H=255 0.000014 0.000014 
L=5,H=5 0 0 

L=300,H=300 0.000011 0.000011 
Table 2. The accuracy of the floating-point DIF DCT 

Data Range Overall Mean Ab-
solute Error 

Overall Mean 
Square Error 

L=256,H=255 1.262053 3.570425 
L=5,H=5 1.222489 3.271673 

L=300,H=300 1.076280 3.047527 
Table 3. The accuracy of the fixed-point DCT 

Figure 4 shows this situation. Figure 4 depicts the 100-th P-frame 
of “Salesman” encoded using different DCTs. The floating-point 
DCT is used in (a), while the fixed-point DIF DCT is used in (b). 
Clearly, the salesman’s right hand and the box blur more signifi-
cantly in (b). The errors are generated in the I-frame stage and then 
are diffused by motion vectors into the P-frames. Hence, the mov-
ing part has the strong blurred effect. In order to avoid this effect, 
we force our encoder to perform one INTRA-frame coding for 
every ten P-frames. Consequently, the DCT errors are not accumu-
lated large enough to distort the video quality. There is another 
solution stated in the Annex W [5]. The fixed-point DCT specified 
in Annex W has a better accuracy, but it, on the other hand, in-
creases computations significantly. In practice, to eliminate trans-
mission error propagation in particularly wireless environment, 
frequent frame refresh or intra-frame coding is necessary. Intra-
coding strategy is thus adopted. 
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Figure 3. The 100-th P-frame of “Salesman” encoded by using (a) 
floating-point DCT and (b) fixed-point DIF DCT. 

3. RATE CONTROL 

To maintain a constant output bitrate, a rate control algorithm must 
be used in our encoder. There are two major considerations: the 
delay produced by bits accumulated in the encoder buffer and the 
bit allocation issue, which affect the coded picture quality. In addi-
tion, including a rate control into our encoder implementation re-
quires a significant amount of additional computation and memory 
(for program and data). Hence, we choose a less complicated rate 
control algorithm described in TMN5 [12]. 

At the beginning, we have a target frame rate ftarget  and a target 
bitrate R . Consequently, we can calculate the target number of bits 
per picture B. When finishing encoding one frame, we obtain Δ1B, 
which is the difference of bits spent on the coded picture and the 
target bits B at frame level. If the available bits per frame (B) are 
distributed uniformly over all macroblocks, we know the target 
number of bits per macroblock. Thus, we can calculte Δ2B, which 
is the difference of coded bits spent on a macroblock and its target 
bits at macroblock level. Essentially, we use these two values, 
Δ1B andΔ2B to adjust the quantization parameters to allocate bits 
based on the following formula [12]: 
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where QPi-1 is the quantization stepsize for the previous frame and 
QPnew is the quantization stepsize for the current macroblock to be 
coded. Moreover, we need to take care of the delay due to buffer-
ing and maintain the buffer fullness as near constant as we can. 
Therefore, if the buffer fullness exceeds a threshold, the encoder 
will skip the next frame until it goes down to the acceptable region.  

Figure 4 shows the simulation results using the aforementioned  
(TMN5) rate control algorithm. In this experiment, the target bit 
rate is 53kbps, and the buffer threshold is 8kbps for skipping 
frames. Because one intraframe is enforced for every ten frames, 
the bit rate is somewhat higher at multiples of the tenth frame. Also, 
the PSNR values are lower for these frames since intraframe cod-
ing requires more bits. Although the frame coding mode (in-
ter/intra) is changed regularly, the output bit rate and the buffer 
level remain nearly constant. In general, the rate control mecha-
nism works quite well. 

0

5000

10000

15000

20000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

 
   (a) 

0

2000

4000

6000

8000

10000

12000

14000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

 
   (b) 

29

30

31

32

33

34

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

 
   (c) 

Figure 4. QCIF foreman sequence encoded with TMN5 rate con-
trol (a) bits used per frame, (b) encoder buffer fullness, and (c) 
PSNR per frame. 

4. DSP IMPLEMENTATION 

We implement our system on the Blue Wave Systems PCI/C6600 
applications board. It provides a software support library for data 
transfer between the host PC and the DSP. This library is called 
“Generic Host Interface Library” (GenrHL) [10]. It includes two 
types of data transfer: “message system” and “mailbox interrupt”. 
The former one provides efficient bulk of data transfer between 
host PC and DSP. The latter one provides interrupt between host 
PC and DSP and is useful for synchronization. Besides, This board 
has two TI TMS320C6201 fixed-point processors on it. Each DSP 
has 64kbytes internal program memory, 64kbytes internal data 
memory, and 16Mbytes external SDRAM. We will describe our 
implementation in detail in the next subsection.  

4.1 Optimization for DSP Architecture 
• Intrinsic operator: The C6000 compiler provides intrin-

sics, special functions that map directly to inlined C62x in-
structions to optimize C codes. All instructions that are not 
easily expressed in C codes are supported as intrinsics 
[13][15]. For example, we can use the intrinsic operator 
“_abs” to calculate the saturated absolute value. 

• Wider memory access for smaller data widths: In order 
to maximize data throughput, it is often desirable to use a 



 

single load or store instruction to access multiple data values 
consecutively located in memory. For example, C6x have 
instructions with associated intrinsics, such as “_add2()”, 
“_mpyhl()”, “_mpylh()”, etc, that operate on 16-bit data 
stored in the high and low parts of a 32-bit register. When 
operating on a stream of 16-bit data, we can use word ac-
cesses to read two 16-bit values at a time, and then use an-
other C6x intrinsics to operate on the data [13]. 

• Memory management: TI TMS20C6201 DSP has only 
totally 128kbytes internal memory. Therefore, memory man-
agement becomes very important. In program memory man-
agement, we delete unused codes and re-write some func-
tions to reduce the program code size. Furthermore, we use 
the compiler options to optimize the execution speed. In data 
memory management, we put all dynamic allocated memory 
sections into the external SDRAM and put frequently used 
data in the internal data memory. 

4.2 Implementation Results 

We replace the motion vector search algorithm and the DCT algo-
rithm with the fast algorithms described before. In addition, we 
optimize the program using the optimization techniques described 
in the previous section. The final results are shown in Table 4. Our 
code size is about 46kbytes without rate control and 58kbytes with 
it.  

 Original Optimized

I- frame coding 67.48MIPS 2.89MIPS

P-frame coding 229.52MIPS 6.44MIPS

Table 4: Encoding speed comparison between the original source 
codes and the optimized codes. 

On the other hand, the decoder is easy to implement on DSP as 
compared to the encoder. Hence, we do not describe in details on 
its implementation. We simply give the final results here. The av-
erage decoding speed is about 26 QCIF frames per second, and the 
code size is about 27kbytes. 

 

 

 

 

 

 

Figure 5. System block diagram of the pipeline-like structure. 

4.3 Multitasking System 

Multitasking programming for operating system means the compu-
tation power of CPU is not dedicated to a single application but 
can be distributed to multiple tasks simultaneously [14]. In our 
system design, each block in Figure 5 is an individual thread. 
Therefore, the system has a pipeline-like structure. Furthermore, 
each interface between different blocks requires a synchronization 
object to control the data flow. This server-client based system can 

achieve about 14 QCIF frames per second encoding and decoding 
speed. 

5. SUMMARY 

In this paper, we implement the basic H.263+ encoder using the TI 
TMS320C6201. To reduce the computation load, we bring in the 
diamond search algorithm and the fixed-point DIF DCT algorithm. 
However, the fixed-point DIF DCT contains the rounding errors, 
which affect the video quality. One simple and practical approach 
to reduce this effect is forcing one intra frame per ten or so inter-
coded frames. In addition, we modify our C codes to take the ad-
vantages of the TI DSP architecture and the compiler's features. At 
the end, we can encode about 20 QCIF frames/second using one TI 
DSP. And the average decoding speed is about 26 QCIF 
frames/second. 

6. REFERENCES 
[1] ITU-T Study Group 16, Video Coding for Low Bit Rate Com-

munication, 1998. 
[2] Telenor research official ftp site: ftp://bonde.nta.no/pub/ 

tmn/software. 
[3] C. Côté, B.Erol, M.Gallant, and F.Kossentini “H.263+: Video 

Coding at Low Bit Rates”. IEEE Trans. Circuit Syst. Video 
Technol., vol. 8, no. 7, Nov 1998, pp. 849-866. 

[4] Texas Instruments “TMS320C6x Technical Brief.” Texas 
Instruments, 1999. 

[5] ITU-T Study Group 16, H.263 Draft Annex U, V, and W, Feb. 
2000. 

[6] H.-M. Hang and J. W. Woods, Handbook of Visual Commu-
nications, Academic Press, 1995 

[7] ITU-T Study Group 16, Video Codec Test Model, Near-Term, 
Version 8 (TMN8), 1997. 

[8] K. R. Rao and R. Yip, Discrete Cosine Transform- Algo-
rithms, Advantages, Applications, Academic Press, 1990. 

[9]  Blue Wave Systems, Blue Wave Systems PCI/C6600 Applica-
tions Board Technical Reference Manual, 1999 

[10] Blue Wave Systems, Blue Wave Systems Host and MPC860 C 
GenrHL User Guide for C6x Boards, 1999 

[11] M. L. Woo, Real-Time Implementation of H.263+ Using TI 
TMS320C62xx, MS Thesis, Institute of Electronics, National 
Chiao Tung University, June 2000. 

[12] ITU-T Study Group 15, Video Codec Test Model, TMN5, Jan. 
1995. 

[13] Texas Instruments “TMS320C6000 Programmer’s Guide” 
Texas Instruments, 1999 

[14] J. R. Woo, DSP-based Real-Time H.263 Encoding /Decoding 
and Transportation for Video Conferencing, MS Thesis, In-
stitute of Electronics, National Chiao Tung University, June 
2000. 

[15] Texas Instruments, C Implementation of the TMS320C62xx 
Intrinsic Operators. Texas Instruments, Application Report, 
Literature Number: SPRA616, Dec. 1999. 

Server PC DSP 
(Encoder) 

DSP 
(Decoder) 

Client PC 

Video  
Capture 

Video 
Playback 


