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ABSTRACT

Our goal in this research is to find a good inverse halfton-
ing algorithm that recovers gray-scale images from the scanned
images. To this aim, we develop the printer and the scan-
ner models and two types of reconstruction methods. In
the first method, the reconstruction filter is derived directly
from the scanned data and the ideal original gray-scale im-
age. In the second method, the forward halftoning, the
printing and the scanning processes are reversed one by
one. Either approach seems to produce reasonably good
results.

1. INTRODUCTION

Halftoning is a very popular technique for producing printed
pictures with only two levels of color. Our goal in this study
is to reconstruct gray-level images from the scanned bi-level
images. It is rather different from the usual inverse halfton-
ing designed for ideal digital bi-level halftone images [1]
because the scanner output images are distorted versions
of the original digital bi-level images. In order to reverse
the operations done by the printer and the scanner, we de-
velop the printer and the scanner models to represent the
printing and the scanning processes. Then, when we apply
the inverse operations of the halftoning, the printing and
the scanning processes on a printed image, the gray-level
images can thereafter be recovered.

2. PRINTER AND SCANNER MODELS

From signal processing viewpoint, a printer is a process
that converts a halftone image (input) to a printed image
(output). Similarly, a scanner is a signal processing process
that converts a printed image (input) to a scanned image
(output). In the following derivation and experiments, we
assume the resolutions of both printer and scanner are the
same (300 dpi). Following the same approach, we could
extend these results to unequal resolution cases.

2.1 Printer Model

The printer and scanner block diagram is shown in Fig. 1,
where d(i, 7) represents the ideal halftone image and has
only two values, say 0 and 255, d'(3, 7) represents the scanned
gray-level image, and D(1,j) is the representative value of
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ink distribution inside the (i,7)" grid assuming the pa-
per surface has been partitioned into invisible perfect grids.
D(z,7) has two values, w and b, representing the white and
the black dots. Thus the printer model is simply a trans-
formation that converts the digital bi-level data into dots
of w and b values on_ paper.
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Figure 1: The printing, scanning and recovering system
diagram

There are inherit “uncertainties” or “noises” in our printer
model. They come from many different sources. For exam-
ple, the ink density distribution and the dot size of the same
printer may vary from one location to another. Similarly,
there exists fluorescence variation on the same piece of pa-
per. On the other hand, in scanning, the scanner grid is un-
likely aligned perfectly with the printed image grid. Hence,
there are grids “rotation” and “displacement” involved in
picking up images by the scanner. We are able to com-
pensate part of rotation and displacement when they are
large. However, the remaining small residual values would
be treated as notse.

2.2 Scanner Model

We assume that the scanner model can be decomposed
into two parts: Part 1 is a linear system and Part 2 is a
memoryless nonlinearity. Part 1 models the transformation
from printed image dot (D(z, 7)) to the brightness received
by the scanner sensor. We assume that the brightness re-
ceived by a sensor from any dot on the paper depends only
on the relative distance between the dot and the sensor, and
that the brightness generated by all the dots can be linearly
superposed. Under the above assumptions, this transforma-
tion is represented by a linear filter with impulse response
(h(i, 7)) which behaves like a lowpass filter (Fig. 2). Part 2
models the transformation from the sensor received bright-
ness to its output value. Based on our observations we
assume that it behaves like a (nonlinear) clamping function
that limit the scanner outputs to a finite range as shown in
Fig. 2.
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Figure 2: A scanner model with noise

The concatenated printer and scanner model has been
shown in Fig. 1. Ideally, we like to compute the parameters
in the above printer and scanner models, namely, w and b
in the printer model, the impulse response h(7, ) and the
shape of clamping function in the scanner model. However,
in our experiment setup, we can only measure the data at
the printer input, d(i, 7) and at the scanner output, d'(3, 7).
Therefore, we do not have sufficient information to deter-
mine the values of w and b directly; we could only compute
their scaled version, W and B, as follows.

Imagine that we create an artificial (physically non-
exist) printed image with a white dot at position (0,0) and
surrounded by the pure black background. (Note: “Pure
black background” means the scanner output of this “color”
is “0”.) It is denoted as D(i,5) = w x 6(4, j). Then, we de-
note the total sum of the filter outputs as W that is, W =
Z:’;_oo j';_oo wh(i, j). Let a = Z_OO z;’i_oo h(1,7),
then W = axw. Therefore, the W value represents the total
brightness received by the scanner due to a white dot on pa-
per. Similarly, for a black dot (b), B=3%"7" ___ ;'Z_oo
a x b. Based on the above definitions of W and B, D'(s, j)
is defined as a scaled version of D(i,5); namely, D'(i,j) =
D(i,5) xa. Thus, D'(4, ) has values of B and W, which can
be computed from the scanned values of a known printed
pattern as discussed in the next subsection.

We next look for h(t,j). Assuming the clamping op-
eration in the scanner model (Fig. 2) is inactive (all the
scanned values are within the linear region), then the oper-
ation of the entire scanner is simply a linear filter. That is,
d'(i,7) = h(1,5) ® D(z,5). Let

v (i)

R ) = ==,

then  d'(i,5) = h(i,4) ® D'(i, 5).

Hence, h'(4, §), the normalized version of A(%, 5), will be used
in conjunction with D’(z, j) in the rest of this paper. Now,
this #’(¢,5) can be estimated from the measured data of
known input signals using minimum mean square estima-

tion (MMSE).

2.3 Simulation Results
A known 5 x 5 printed white pattern shown in Fig. 3(a)

is used to identify the printer and the scanner models de-
scribed in the above.

1. Find B value: Scan a 512 x 512 picture and use the
400 x 400 black area inside to compute an average
value of B = 20.

bh(z, 5)
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Figure 3: (a) The scanned 9*9 pattern, (b) The clamping
operation of Part2

Figure 4: (a) The error pattern: d’(s,5) — d'(s, 5), (b) The

filter #'(z, 5)

2. Find W value: The total sum of a 13 x 13 area sur-
rounding the 5 x 5 pattern is SUM = 3197404. This
SUM is the overall brightness of 25 white dots and
(13%—5%) black dots. Hence, W = w =

240.

. Estimate ~’(): Use the standard minimum mean square
error (MMSE) method to estimate h'(z,j), -2 < 1,7 <
2 based upon the 9 x 9 region surrounding the 5 x 5
white dots. The resultant h'(7, j), and the identifi-
cation error (i,5) = d'(i,5) — d'(i,5) are shown in
Fig. 4, where d'(.,.) is the estimated value of d'(.,.).

3. FURTHER INVESTIGATION ON PRINTER
AND SCANNER MODELS

In addition to the scanned pattern shown in Figure 3(a)
(Pattern A), we create a “7 x 7” data pattern shown in
Figure 5(a) (Pattern B) and a “four concatenated 3 x 3”
pattern shown in Figure 5(b) (Pattern C). The Pattern B
is created to produce a large white area and thus the clamp-
ing effect may become evident, assuming that the clamping
operation is the nonlinear curve shown in Figure 3(b). In
contrast, the Pattern C' is created to avoid clamping oper-
ation. The above three patterns are used to identify the
scanner model using either the “MMSE” method or the
“sequential training” method.

The sequential training method we use is the conven-
tional least mean square (LMS) method. Its training pro-
cedure is similar to the SWF method stated in [1]. Because
the training data size is small, it takes a number of iterations
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Figure 5: (a) Pattern B, (b) Pattern C

Ba | Al pattern | Bl pattern | C1 pattern
0.00 30.2381 97.9906 30.1768
0.09 22.9688 62.9885 24.0144
0.18 29.5860 41.0079 19.5240
0.21 35.6747 37.5706 18.4498
0.24 44.1206 36.5753 17.6650
0.27 55.3422 38.4525 17.3353
0.30 69.9794 43.7021 18.1123

Table 1: Ba vs MSE for Patterns Al, Bl and C1

(40000 iterations) to reach convergence. Both methods pro-
duce similar results. Typically, the identification errors are
significantly larger on the edges of white block in the pat-
terns. We suspect that the black dot ink diffuses to the ad-
jacent dots and thus the brightness generated by the white
dots is less than expect. This phenomenon is illustrated by
Figure 6(a). We assume that the amount of black ink of a
black dot diffuses into a nearby white dot is Ba. Then there
are five types of white dots (W0, W1, W2, W3, W4) in our
test patterns, where Wk = W — k x Ba approximately [2].
Based on the above definitions of Wk and Ba, we can use
the Wk to substitute for the W in the Patterns A, B and C
to obtain the corresponding corrected Patterns Al, Bland
C1 as illustrated by Figure 6(b). Now, we try different
Ba values (Ba = 0, 0.03, 0.06, ...0.3) to find the scanner
model using the same sensed data but based on assumption
of Patterns Al, Bl, and C1. From Table 1, we observe
that for Pattern A1 the MSE of Ba = 0.09 is the smallest.
In the cases of Patterns B1 and C1, the smallest MSE oc-
curs at Ba = 0.24 and Ba = 0.27 respectively. In addition
to the above results, we find that the filter shape are very
similar when Ba = 0.18 for Patterns Al, B1, C1 patterns.
Hence, we choose Ba = 0.18 to identify the scanner model.
Because that the MSE of Pattern C1 is the smallest, the
scanner filter derived based on Pattern C1 assumption may
be the most accurate.

4. INVERSE HALFTONING SCHEMES

Our goal is to reconstruct gray-level images from the
scanned images. The entire printing, scanning, and recon-
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Figure 7: (a) Lennal (b) The image recovered from lennal
by DIM method

structing system is illustrated by Figure 1, where 7(z,7)
represents the reconstructed gray-level images. There are
two approaches to use the printer and the scanner mod-
els we just described. 1) When we inverse the printing
and scanning processes for a printed image, wé can recover
the halftone images. Then, the ordinary inverse halftoning
technique designed for ideal bi-level images can be applied.
This will be called scanner model based (SMB) method. Or
2) we could combine the inverse printer and scanner model
together with the usual inverse halftoning procedure to pro-
duce the gray-level images in one step. This will be called
direct inverse modeling (DIM) method .

In this paper, lenna, peppers and baboon of size 512 x
512, 8 bits each pixel are used as the test pictures and the
processing window size of the scanned data is 718 x 716.
These pictures are halftoned using a 5 x § clustered-dot
dither matrix and are printed using an NEC Printer (Model:
NT3234). The term “lenna” denotes the original gray-
scale lenna image. The first scanned lenna data is called
“lennal”. The same notation is used for baboon and péep-
pers. The scanned image (lennal) is shown in Figures 7(a).
It can be seen that the scanned image is rather blocking.

4.1 Direct Inverse Modeling Method

The direct inverse modeling (DIM) method is simply de-
riving the reconstruction filter based on the scanned data
(input) and the original images (ideal output). But this
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gram

method can be used only when the dimensions of the input
and the output are identical. Hence, we need to convert
the expanded (or reduced) scanned image to the original
size. In our experiment, a 512 x 512 original image is ex-
panded to a 519 x 515 scanned image. A simple approach
is to interpolate and then trim the scanned image. If we
ignore the interpolation operation, the trimming operation
alone would produce incorrect reconstruction filters. The
recovered image from lennal is shown in Figure 7(b). We
can observe that the recovered images is somewhat blurred.
The low frequency components of the original image seem
to be recovered well but the high frequency components are
lost.

4.2 Scanner Model Based Method

In this section, the inverse halftoning method based on
the scanner model (Scanner Model Based (SMB) Method) is
introduced. The system diagram of converting the halfton-
ing images to gray-scale images is shown in Figure 8. The
complete inverse halftoning system includes the inverse scan-
ning process, the inverse printing process and the inverse
halftoning process. The inverse scanner model is composed
of the inverse clamping operation and the inverse scanner
linear filter. The inverse scanner filter is found by finding
the inverse model of the scanner described earlier. The
printing process maps each pixel value from (255, 0) to
(W, B). Hence, the inverse printing process should maps
each pixel value from (W, B) to (255, 0). However, because
that the inverse scanned image r'(4, j) has more than two
values due to various noises (nonideal factors) in the print-
ing and the scanning process, the inverse mapping becomes
less intuitive. Two approaches have been tested.

(A) Scaling Approach

Because the B/W is small. Hence, we simply treat (W, B)
as (W,0). As a consequence of this mapping is that the
resultant filter is a scaled (larger) version of the ideally in-
verted filter. However, this method can compensate for the
brightness loss due to black ink diffusion. Therefore, it pro-
duces rather good result. These new filters (scaled up) are
named lennasa, pepperssa, and baboonsa.

(B) Combined Approach

The reconstruction filter is trained by using (W, B) as in-
put (where W = 240 and B = 20) and the perfect original
image as output. This filter produce higher MSE. The fil-
ters obtained by “Combined Approach” are named lennaca,
peppersca and baboonca. The gray-scale images recovered
from lennal using lennasa and lennaca are shown in Fig-
ures 9(a) and 9(b). We can find that there are visible
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Figure 9:

(a) The image recovered from lennal using
lennasa filter (b) The image recovered from lennal using
lennaca filter

method DIM SMB
lennaca | lennasa | baboonsa
lennal MSE 427.87 374.28 298.38
AVE 112.39 113.87 123.43
peppersl | MSE | 632.28 640.85 615.88 648.83
AVE | 112.43 113.69 123.12 123.73
baboonl MSE | 1073.35 | 1054.88 856.88 883.33
AVE 112.42 113.18 122.70 120.34
AVE of lenna =123.54
AVE of peppers =120.22
AVE of baboon =129.62

Table 2: Comparison of various reconstruction methods

noises in the smooth regions. Because the inverse scanner
linear filter is calculated from the “designed patterns”, this
filter can recover the high frequency portion well but can
not eliminate the displacement noise. The modified inverse
halftoning filter is a low-pass filter and can reduce some dis-
placement noises. Hence, the “SMR” method can recover
images with higher frequencies at the price of visible dis-
placement noise in recovered images. From Table 2, we can
observe that lennasa filter is better than lennaca filter and
DIM method.
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