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PAPER

A Relevance Feedback Image Retrieval Scheme Using
Multi-Instance and Pseudo Image Concepts

Feng-Cheng CHANG†a), Nonmember and Hsueh-Ming HANG†b), Member

SUMMARY Content-based image search has long been considered a
difficult task. Making correct conjectures on the user intention (perception)
based on the query images is a critical step in the content-based search. One
key concept in this paper is how we find the user preferred low-level image
characteristics from the multiple positive samples provided by the user. The
second key concept is how we generate a set of consistent “pseudo images”
when the user does not provide a sufficient number of samples. The notion
of image feature stability is thus introduced. The third key concept is how
we use negative images as pruning criterion. In realizing the preceding
concepts, an image search scheme is developed using the weighted low-
level image features. At the end, quantitative simulation results are used to
show the effectiveness of these concepts.
key words: image retrieval, perception weighting, relevance feedback

1. Introduction

Due to the increasing popularity of digital capturing devices
such as digital camera, the dramatically large size of digital
contents demands highly efficient multimedia content man-
agement. For a particular application, in order to achieve the
desired matching accuracy, a content-based image retrieval
(CBIR) system often has a distinct set of configurations [1]
including selected image features and a processing archi-
tecture. A known approach for constructing a satisfactory
CBIR system is to incorporate semantic related features for
matching. Researches on CBIR topics show that semantic
features are critical in boosting the query accuracy. These
high-level features can be either extracted at the stage of
content analysis, or acquired at run-time. The former is
used to provide semantic content descriptions and often re-
quires sophisticated feature extraction processes, such as ob-
ject segmentation or textual descriptions. The latter is often
used to capture the user preferences, and often tries to derive
the information from run-time input sources, for example,
the user-provided query images.

Features can be roughly categorized into two groups
according to their lifetime. The first group is used to de-
scribe the static information of an image, such as the color
and the textual description; the second group is used to de-
scribe the run-time properties of a content-based processing
system, such as the user preferences and the content distri-
bution in a database. Although these two kinds of features
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represent different aspects of a CBIR problem, they are of-
ten coupled. A CBIR application is often designed for a
specific problem domain, and only processes a limit num-
ber of static features. Based on these selected features, it
incorporates means to conjecture about user preferences for
each query. There are no general rules in acquiring user
preferences; thus, many CBIR systems have been proposed
to interact with users by using relevance feedback. A typi-
cal Query-by-Example (QBE) CBIR system with relevance
feedback generally analyzes the user query images and/or
relevant feedback images to derive the necessary search pa-
rameters. The search parameters are often defined in terms
of the image features pre-chosen in the system. Then, the
system searches the database and returns a list of the top-
N similar images for further feedback actions. This process
can be repeated and hopefully it will eventually produce sat-
isfactory results to that particular user and query. If we treat
the relevance feedback function as a means to obtain multi-
ple user inputs, the system can be generalized to be an ar-
chitecture which:

• acquires multiple query instances (positive ones and
negative ones).
• analyzes the collected instances based on the pre-

chosen features.
• makes a “guess” on the user intention, represented by

using the pre-chosen features.
• performs the search according to the derived user in-

tention.

In addition to the user preference issue, we often ex-
pect that a CBIR application can be efficiently implemented.
Many of the conventional CBIR methods adopt classifica-
tion techniques, and assume that some global distribution
parameters are available without penalty. For example, the
MARS [2] scheme needs the mean and the variance values
in normalizing distances. However, when an application is
applied to a very large database or a collection of distributed
databases, it not only faces the computational complexity
problem, but also it needs to solve the frequent database
update problem. Thus, updating the database distribution
parameters can be a costly task. Although the terms, posi-
tive and negative queries, appear in [3], they are referred to
(image) regions that compose an image. Image similarity is
decided by a number of set operations on the pre-classified
(region) feature clusters. The approach in [3] is very differ-
ent from the approach in this paper.

In this paper, we are interested in estimating low-
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level user perception from multiple query images on-the-fly.
Thus, we will focus on the content-based image retrieval
(CBIR) methods using only low-level image features. In
designing the user-intention estimation algorithm, we try to
keep the algorithm independent of the distribution parame-
ters to reduce the computational cost. As shown in Sect. 4,
it may degrade the accuracy in some cases. However, it is a
trade-off between accuracy and scalability.

Our paper is organized as follows. In Sect. 2, we briefly
discuss the concept of multiple query instances (relevance
feedback) and the problems in using this technique. In
Sect. 3, based on a few assumptions, we propose a straight-
forward yet effective method that incorporates multiple sam-
ples and image multi-scale property for estimating user in-
tention. Also in this section, we propose a method to deal
with the negative samples. In Sect. 4, we conduct simula-
tions to evaluate our conjectures. Base on a fairly recog-
nized objective performance index, we compare a few dif-
ferent methods. At the end, we conclude this presentation
with Sect. 5.

2. Problem and Design Target

As described in the previous section, relevance feedback is
a method to acquire multiple user-provided query images.
The problem is how one utilizes multiple image features
and multiple query instances (images) to derive the suitable
parameter values for searching purpose. Multiple features
and multiple instances represent two different aspects. The
former is how we describe an image in an application; the
latter is how we guess the user intention using the given in-
stances. There exist many proposals on combining multiple
features for image search such as using Borda counts [4].
Methods of combining multiple instances are usually con-
sidered as a part of a relevance feedback operation. There
are several existing CBIR proposals containing relevance
feedback such as MARS [2], [5] and iPURE [6]. Typically,
the multi-instance analysis process uses the pre-selected fea-
tures. Since feature selection is a design-time issue, the
analysis method varies from application to application. For
example, if the features are expressed as a vector of mo-
ments, the weighting factors for each moment can be com-
puted by the boosting method [7], as described in [8] and
[9].

In our previous project, we developed an MPEG-7
testbed [10] and thus have used it to examine several low-
level MPEG-7 features. We observed that subjectively sim-
ilar pictures tend to be close (near) in one or more feature
spaces. Another observation is that a low-level feature often
has (somewhat) different values when it is extracted from
the same picture with different spatial resolutions and/or pic-
ture quality (SNR scalability). Our investigation finds that
people often design a QBE system with feedback under the
assumption that a sufficient number of query instances or
feedback iterations can be provided by the user. However,
this assumption is not always true in a real-world applica-
tion [11], [12]. Often, the sample size is very small (one to

three) and the information contained in the samples may not
be all consistent in the sense of data clustering.

Based on our observations, we are motivated to de-
velop a user perception estimation algorithm, which tries to
make a correct conjecture on the user intention based on a
small number of samples (instances) provided by the user.
For simplicity and fast calculation, our system uses only
low-level features for high-volume feature extraction and
matching. Another consideration is that it incorporates only
simple distance-based weighting and matching scheme to
make it easily integrated into various application scenarios.
For a large database (especially a collection of distributed
databases), calculating global distribution parameters often
accompanied with some penalty. In our design, several el-
ements are different from the previous works: the first is
that our system is independent of global distribution param-
eters and thus it is suitable for large database; the second is
that we treat the negative query images in a special way as
described later; the third is that we adopt a simple user inter-
face for relevance feedback. Our system only asks users to
label positive or negative images without restriction on their
numbers.

3. Proposed Weighting Method

In the following discussions, we focus on a geometrical ap-
proach that combines multiple low-level features together
to form a “good” similarity function for retrieving similar
images. We first describe the feature weights produced by
multiple instances (query set) in Sect. 3.1. When an image
is selected as a negative example, we use the method de-
scribed in Sect. 3.2 to prune irrelevant results. Then, the
approach of generating pseudo images using multiple (spa-
tial or SNR) scales is described in Sect. 3.3. In Sect. 3.4,
we propose a CBIR architecture that uses the multi-instance
and pseudo image concepts. It solves the feature space nor-
malization problem, and reduces the impact of insufficient
user supplied information. In this section, we also provide
several screen-shots to demonstrate the subjective results of
our method. More detailed simulations with objective met-
rics are provided in Sect. 4.

3.1 User Perception Estimation

There are several ways to combine different low-level fea-
tures. Here we adopt a straightforward one: weighted sum
of feature distances. We use the originally designated dis-
tance definition of individual features. Our focus is to find
the most appropriate weight of each feature to produce an
effective combined distance measure. Thus, our method
preserves the individual feature space properties. In this
scheme, the user perception is expressed by a weighting
vector. Note that the weighting vector is derived from the
multiple instances provided by the user.

Similar to many other image retrieval schemes, we as-
sume the following conditions are satisfied:

• All the basic feature distance metrics have finite values
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[0,∞), and a zero-distance means the two features are
equivalent.
• Two perceptually similar images have a small distance

in at least one feature space.
• Low-level features are locally inferable [13]. That is,

if all the feature values of two images are fairly close,
then the two images are perceptually similar.

In addition to the above assumptions, we add another con-
jecture: if two images have a large distance value in a spe-
cific feature space, we cannot determine the perceptual sim-
ilarity of them based merely on this feature. Note that this
feature space is simply irrelevant to our perception. It does
not necessarily decide dissimilarity in perception.

Different from several well-known CBIR systems, our
system does not rely on a priori feature distributions. These
distributions may help to optimize inter-feature normaliza-
tion, as in MARS [2], to produce better matching perfor-
mance. However, they often introduce overheads and re-
quire high computation. Even if feature distributions are
available, they may not lead to appropriate normalization.
More importantly, user perceptions do not necessarily match
the feature distributions in the database. Thus, we try to de-
sign our method to be independent of feature distributions
as shown below. The need of normalization is eliminated
because of the way we define distance function.

In summary, our feature weighting and combination
principle is: given two user-input query images, if they are
farther apart in a certain feature space, this feature is less
important in deciding the perceptual similarity for this par-
ticular query. Suppose we have a query image set with n
samples, Q = {qi | i = 1..n}, and an available basic feature
set F = {F j | j = 1..m}. Let fi j denote the value of the
j-th feature (F j) for the i-th image (qi). The normalized dis-
tance function for feature F j is d j( f1 j, f2 j) = n j∗D j( f1 j, f2 j),
where D j( f1 j, f2 j) is the designated distance function for F j,
and n j is the normalization factor for F j, which sets the nor-
malized value d j( f1 j, f2 j) in the range of [0, 1]. Though n j

is an a priori information, we will see that it can be safely
discarded at the end of this section.

To measure the sparseness of a feature point set, we
assume all the feature distances satisfy the properties of an
Euclidean space, for example, the triangular inequality. We
will also suggest an alternative definition of sparseness in
Sect. 4.4, which relaxes the assumption of Euclidean space
and produces comparable results. Based on the finite dis-
tance assumption, there exists at least one hyper-sphere, in-
side which all the feature points are located. A hyper-sphere
can be defined by a “pivot” (centroid) and a radius. In the
following description, r(k)

j is the radius of the k-th hyper-
sphere in the F j space. Among all possible spheres in the
F j space, we call the smallest one as the bounding sphere,
and its radius is defined as the scatter number in this space.

Based on the above discussion, we define the scatter
number (s j) of Q for feature F j as follows:

s j =


1, if | Q |= 1 (1)
1
2 d j( f1 j, f2 j), if | Q |= 2 (2)

max∀k r(k)
j , if | Q |≥ 3 (3)

,

where | Q | is the size of set Q.
In condition (1), because we do not have enough in-

formation to determine the scatter of each feature, we sim-
ply assign a default value (= 1) to s j. In case (2), we only
have two query samples Q = {q1, q2}. Thus, the minimal
bounding radius is half of the distance between them. In
case (3), we have more than two query instances, and we
can derive the bounding radius using geometry theorems.
Let Q(k) = {q(k)

1 , q
(k)
2 , q

(k)
3 } be the k-th combination out of the

total Cn
3 combinations of the query set Q, and they satisfy

the following criterion:

t(k)
1 = d j( f (k)

1 j , f (k)
2 j )

t(k)
2 = d j( f (k)

2 j , f (k)
3 j )

t(k)
3 = d j( f (k)

3 j , f (k)
1 j )

t(k)
1 ≥ t(k)

2 ≥ t(k)
3

,

Under this condition, there are two sub-cases: one is (t(k)
1 )2 ≥

(t(k)
2 )2 + (t(k)

3 )2, and the other is (t(k)
1 )2 < (t(k)

2 )2 + (t(k)
3 )2. When

the former one occurs, the bounding radius is r(k)
j =

1
2 t(k)

1 ;

when the latter one occurs, r(k)
j is the solution of the two

equations:

(t(k)
1 )2 = (t(k)

2 )2 + (t(k)
3 )2 − 2(t(k)

2 )(t(k)
3 ) cos θ

(t(k)
1 )2 = (r(k)

j )2 + (r(k)
j )2 − 2(r(k)

j )(r(k)
j ) cos 2θ

The scatter numbers may be interpreted as an “impor-
tance” indicator of that feature, because a larger bounding
sphere means that feature points are spreaded over a large
region. Based on the previously described principles, we
give less perception weight to a more scattered feature (F j):

wj =
1
s j
∗


m∑
k=1

1
sk


−1

.

The distance function (of two images, q1 and q2) combining
m features is then defined as

D(q1, q2) =
m∑

j=1

wj ∗ d j( f1 j, f2 j).

Finally, the distance function between image I and n query
instances (Q) is defined by

D(I,Q) = min
i=1..n

D(I, qi).

Note that the normalization factor n j is canceled in every
wj ∗ d j( f1 j, f2 j) term. This implies that we can safely ignore
the distance normalization problem as long as all the feature
metrics are bounded.

To test the efficiency of the method, we perform subjec-
tive queries against the image database that will be described
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(a)

(b)

Fig. 1 Subjective result of multi-instance effects.

in detail in Sect. 4.2. Three image global features defined by
MPEG-7 [14] are adopted. They are scalable color, color
layout, and edge histogram. Figure 1 illustrates how our
proposed method improves the query accuracy. Figure 1 (a)
shows the results when a user specifies one image as the
query example. Since we do not have enough information to
weight the features, we simply assign them equal weights.
The top-25 results are listed from left to right and top to
bottom, with the most similar at the top-left corner. The
boxed images are the ground-truth images. We may see that
three non-ground-truth images are considered more similar
than the ground-truth images. Figure 1 (b) shows the results
when a user gives two of the ground-truth images as the
query examples. The system derives weighting factors for
each feature, and the results are improved. All the ground-
truth images occupy the top ranks, a desired result. Figure 2
shows the two ground-truth sets which occupies top ranks
of Fig. 1 (a). The top-left image of Fig. 2 (a) is the query
instance, and the second set (Fig. 2 (b)) interferes the query
results in the condition of Fig. 1 (a).

Fig. 2 The two interfering ground-truth sets in Fig. 1 (a).

3.2 Negative Images

In this section, we will describe how to use negative feed-
back images to improve the query accuracy. For a typical
QBE search, a user provides a non-empty set of relevant
(positive feedback) images. Suppose we can also ask the
user to select negative images. In the following proposed
scheme, negative images are not included in computing the
perceptual weights. This is due to the following observa-
tions.

1. All positive examples are alike; each negative example
is negative in its own way [12].

2. The human perception of similarity and dissimilarity
may not be (linearly) additive.

3. When an image is considered dissimilar to the query
one, we do not know which features (one or many)
dominate in producing the perceptual dissimilarity.

So we use negative images in the following way: they
create “holes” in the feature space. That is, the database im-
ages located inside the pruning radius and close to the neg-
ative images are removed from the top-N (similar) list. As
shown in Fig. 3, a negative sample is denoted as gi and the
positive samples are denoted as p1, p2, and p3. Essentially,
we conduct a pruning process for removing positively cor-
related images based on the given negative image(s). Let Qp

and Qn are the positive and the negative image sets respec-
tively. A pruning radius associated with a negative image
gi ∈ Qn is specified by rp(gi) = D(gi,Qp). An image Ir is
thus removed from the top-N list if Ir is located in a pruning
region:

∃gi ∈ Qn satisfies

{
D(Ir, gi) < rp(gi)

D(Ir,Qp) > D(Ir, gi)
.

There are two conditions given in the preceding equation.
An intuitive explanation to the second condition is that if an
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Fig. 3 Pruning area in the combined feature space.

image is closer to Qn than Qp, it is excluded from the top-
N list. Since the negative feedback sample set is small and
incomplete, we do not want to exclude the images that are a
bit far away from both sets but are slightly closer to a nega-
tive sample. Therefore, the first condition gives a maximum
pruning radius. Thus, our pruning operation starts from the
highest priority item on the top-N list. If an image is closer
to Qn than Qp and is located inside the pruning radius, it is
excluded from the top-N list.

Figure 4 illustrates the matching results with and with-
out the negative query instance. Figure 4 (a) is the query
results of using a single positive instance. After assigning
the highest-ranked non-ground-truth image as the negative
feedback, the query results is shown as Fig. 4 (b). We may
see that the query accuracy is improved even when using
equal-weighted combined distance function (remember that
only positive instances participate in the weighting estima-
tion).

3.3 Pseudo Query Images

In the case that the number of query images is too small, we
use the multi-scale technique to create pseudo query images.
The term “scale” here refers to either the spatial resolution
or the SNR quality. The idea is based on the conjecture
that the down-sampled or noise-added images are subjec-
tively similar to the original version. We also observe that
a low-level feature often have somewhat different values at
different scales.

The pseudo images can be generated in various ways,
such as using wavelet transforms [15]. In this paper, we ex-
amine the effects of spatial scaled pseudo images and SNR-
scaled pseudo images. The spatial scaled images are gen-
erated by down-sampling the original image in both width
and height by a factor of α, 0 ≤ α < 1; the SNR-scaled im-
ages are generated by lowering the quality factor q in JPEG
compression by a ratio of β, 0 ≤ β < 1.

An unstable (sensitive) feature in our definition yields a
large distance value among the scaled images derived from
the original with different scales. The measure of instabil-
ity is again specified by the scatter number s j defined in
Sect. 3.1. Stable features often represent the most noticeable
features of an image and they in term are often the features
that the inquiring users desire. Therefore, we come up with
another principle: We give the stable features of a query im-

(a)

(b)

Fig. 4 Subjective result of negative instance effects.

age more confidence (more weight) in searching for its sim-
ilar images. Thus, we include these pseudo images into the
query set. The combined procedure thus puts less weight to
more scattered features, which may be due to either percep-
tual irrelevance or feature instability. We will see that the
pseudo image improves accuracy when the number of input
images is one or two. Hence, the feature stability principle
is justified mostly by observations and experiments.

The effect of pseudo-image generation is illustrated by
Fig. 5. As before, Fig. 5 (a) is the single positive image
query. When we enable the multi-scale pseudo-image gen-
eration (one SNR pseudo image in this example), the query
returns the desired result, as shown in Fig. 5 (b). Often,
by incorporating pseudo image concepts, the system gives
users the best results at the first query iteration.

3.4 Architecture

The proposed CBIR query system architecture is summa-
rized by Fig. 6. The original positive query (input) images
are used to generate pseudo-images. Together they form the
query set. The query set is fed into the user perception anal-
ysis process to estimate the weighting factors. Then, the
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(a)

(b)

Fig. 5 Subjective result of pseudo instance effects.

Fig. 6 Proposed perception estimation and query system.

query set and the weighting factors are passed to the image
matching process to compute image similarity. A tentative
matching list is thus produced. Then, the pruning process
based on the supplied negative images is applied to the ten-
tative matching list and some “negative” images may be re-
moved. At the end, we receive the final top-N list.

4. Experiments and Discussions

In this section, we examine our design using objective mea-
sures. We first explain the adopted accuracy metric in
Sect. 4.1. Then, the simulation environment and condi-
tions are described in Sect. 4.2. The simulation results are
summarized in Sect. 4.3. Finally, we modify the proposed
method to reduce its complexity. Also, our scheme is com-
pared against with two other schemes in Sect. 4.4.

4.1 ANMRR

Many researches use precision and recall analysis to evalu-
ate a CBIR system. In fact, these two rating metrics repre-
sent two different viewpoints. The former one is the ratio
between the number of the retrieved relevant images and the
number of the total retrieved images. The latter is the ratio
between the number of the retrieved relevant images and the
number of the pre-defined relevant (so-called ground truth)
images. These two rates are influenced by the chosen size
of the top-N list. In searching for a suitable objective mea-
sure, we finally adopt the Average Normalized Modified Re-
trieval Rank (ANMRR) [16] metric. The ANMRR is used in
the MPEG-7 standardization process to quantitatively com-
pare the retrieval accuracy of competing visual descriptors.
This metric is a modified combination of precision and re-
call metrics, and is a normalized index to rate the overall
query accuracy of a system. For a query image, this mea-
surement favors a matched ground-truth result and penalizes
a missing ground-truth. We briefly describe the formula of
ANMRR in the following paragraphs. Details can be found
in the references [16], [17].

For a query image q with a ground-truth size of NG(q),
rank(k) is the rank of the kth ground-truth image on the top-
N result list. Then,

Rank(k) =

{
rank(k) if rank(k) ≤ K(q)

1.25 · K(q) if rank(k) > K(q)

where K(q) = min{4 · NG(q),2 ·max
q

[NG(q)]}.

The average retrieval rank is computed and normalized with
respect to the ground-truth set to yield the Normalized Mod-
ified Retrieval Rank (NMRR):

NMRR(q)

=

1
NG(q)

NG(q)∑
k=1

Rank(k) − 0.5 · [1 + NG(q)]

1.25 · K(q) − 0.5 · [1 + NG(q)]
.
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The range of NMRR(q) is [0, 1]. The value 0 indicates a
perfect match that all the ground-truth pictures are included
in the top-rank list. On the other hand, the value 1 means no
match. Finally, we have the Average Normalized Modified
Retrieval Rank (ANMRR) over the test cases:

ANMRR =
1

NQ

NQ∑
q=1

NMRR(q),

where NQ is the number of queries.

4.2 Experiments

In our previous work [18], we have conducted a preliminary
experiment to evaluate the proposed method against a 1050-
image database. The results show that the multi-instance
user perception weighting method is promising, and the
pruning concept always improves the query accuracy in our
method; also, the pseudo-image concept improves the accu-
racy in many cases.

In this paper, we extend the evaluation process to a
much larger scale. The database consists of 18433 images
including 256 test (ground-truth) images, 194 people (party)
photos, 200 flower pictures, 200 undersea pictures, 200 out-
door scenery pictures, and 17383 images from the Corel
gallery.

We collect 38 sets of outdoor scenic images as the
ground truth. They are similar in terms of low-level descrip-
tions. We prepare the ground-truth images as follows: each
set of ground-truth images is taken on the same spot with
slightly different camera pan and tilt angles by hand. The
size of a ground-truth set varies from 4 to 10. Images in
each set are perceptually similar. However, by examining
the low-level features, we observe that the feature values
can be quite different. There are several possible causes.
The first is that these pictures are taken by hands. They
are inevitably somewhat shifted and blurred. The second is
that different shots have slightly different focus and shutter
speed. The third is that photos with shooting angle variation
may have different background lighting, which may change
the shade of each picture.

Our experiments simulate a typical image query sce-
nario. A user first chooses one or a few “similar” in-
put images to start a query. The matching process re-
turns an ordered list of results; we call it the positive-only
query result. If the result is not perfect; that is, not all
ground-truth images occupy the highest ranks, or simply
NMRR � 0, then the highest ranked non-ground-truth im-
age is assigned as the negative feedback item. Then, we
repeat the query process with both positive and negative im-
ages and produce the positive-and-negative query result. If
the positive-only result is perfect, both NMRRpositive-only and
NMRRpositive-and-negative are set to zero. Since the smallest
ground truth set has only four images, we simulate the con-
ditions of one to three positive images per query. All possi-
ble combinations of images in all ground truth sets are tested
to derive the ANMRR values.

Two multi-scale schemes are tested: spatial and SNR.
The spatial scaling factor (for both width and height) for
each down-sampled image is defined as follows: the n-th
scale factor (for the n-th pseudo image) is α − 0.1(n − 1),
where n = 1, 2. We perform experiments at α = 0.9, 0.8,
0.7, 0.6, 0.5 to look for the best parameter values that lead
to the best ANMRR. The SNR-scaled images are generated
by applying JPEG compression with a quality factor of β −
0.1(n − 1) for the n-th scaled version. The test values are
β = 0.7, 0.6, 0.5, 0.4, 0.3.

To examine the effectiveness of our method, we sim-
ulate another two weighting schemes under the same as-
sumptions. The first scheme is a variation derived from the
MARS system. In this scheme, the distance metric d j( f1, f2)
for each feature F j is normalized as follows:

d′j( f1, f2) =
D j( f1, f2) − µ j

3σ j
,

where µ j and σ2
j are the mean and variance of the distances

of F j in the database. This step ensures that under normal
distribution assumption about 99% of the distance values are
within the range of [−1,+1]. The second parameter-shifting
step guarantees that these 99% values are within [0, 1]:

d′′j ( f1, f2) =
d′j( f1, f2) + 1

2
.

The final step clamps all calculated distance values be-
tween zero and one.

The original MARS system adopts a 5-level relevance
feedback. To make it comparable with our simulation envi-
ronment, we reduce the relevance feedback levels to three:
positively relevant (Scorel = +1), no opinion (Scorel = 0),
and negatively relevant (Scorel = −1). The weighting pro-
cess is similar to that in the original MARS. Assume the
overall query result list is RT , and the result list of feature
F j is RT j. To calculate the weight wj, we first initialize
W j = 0, and then update W j as follows:

W j = W j + Scorel,

for each item l

which appears in both RT and RT j.

After all W j have been updated, the negative weights are ad-
justed to 0 (means “irrelevant” in MARS). Then, we com-
pute the weighting factor for each feature F j as

wj =
W j∑
∀ j W j

.

A final remark about this MARS-like scheme is the RT
list. According to the original proposal [2], it is an iterative
procudure that leads to the “optimal” RT . The original pro-
posal selects P f d = 3 as the maximum number of iterations
and shows good convergence in general. In our simulation,
we set P f d = 5. This is called Scheme A in the rest of this
section.

The second scheme we simulate has the same basic
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structure as our proposed scheme in Sect. 3. However, it
adopts the same distance normalization in MARS. This is
Scheme B. We simulate this scheme for two reasons. One
is to compare with a MARS-like scheme to see the effects
of different weighting estimation procedures. The other is
to compare it with our scheme to see the effects of different
distance normalization methods. Our scheme is labeled as
Scheme C.

4.3 Simulation Results

In this section, we show the simulation of query accu-
racies, under the environments defined in Sect. 4.2. In
Sect. 4.3.1, we examine the effects of multi-instance and
pseudo-images. Then, we put all simulation statistics to-
gether, to compare the efficiency of different matching
schemes. The simulation results are summarized in Ta-
bles 1, 2, 3, and 4. The bold-faced numbers are the win-
ners among all tests with the same query parameters, and
the underlined numbers are the poorest performers. The row
of Input/Query means the number of positive input images
selected by the user in a query. The row of “Pseudo/Input”
means the number of pseudo images created from each (user
selected) input image. The first column (Scheme A) is
the MARS-like scheme, and the second and third columns
(Scheme B and C) are our schemes with different normal-
ization formulas. To see more clearly the differences among
various methods and parameters, the ANMRR values are
shown in log scale. In the following paragraphs, we will
examine these results and discuss the performance of the
aforementioned methods.

4.3.1 Multi-instance and Pseudo-images

Here we examine the effect of multi-instances and pseudo-
images. Two multi-scale schemes are shown in Fig. 7: spa-
tial and SNR scaled pseudo image generation schemes. Fig-
ure 7 (a) is spatial down-sampling with a spatial scaling
factor of α = 0.7. We examine the effect of different
pseudo/input image ratios. Under the same pseudo/input ra-
tio, the more the input images (user provided), the better
the query accuracy. For the same number of input images,
pseudo images can improve the accuracy, especially when
the input images is one or two. However, when input (query)
images are higher in number, the addition of pseudo images
may lower the matching accuracy. Figure 7 (b) shows the
results of using SNR-scaled pseudo images. The noisy ver-
sions (pseudo images) are generated by a scaling factor of
β = 0.4. The general trend of Fig. 7 (b) is similar to that of
Fig. 7 (a). However, the average ANMRR is better in SNR
multi-resolution approach. The other scaling factor values
have been tested but the results are less favored.

4.3.2 Observations on Positive-only Query Results

We first look at the results of positive-only spatial-scaled

(a) Spatial-scaled with α = 0.7

(b) SNR-scaled with β = 0.4

Fig. 7 The examples showing the accuracy improvements by using
multi-instances and pseudo-images.

Table 1 Best log(ANMRR) of spatial-scaled pseudo images (positive-
only).

Scheme Scheme Scheme
A B C

Input/Query = 1
Pseudo/Input = 0 −2.23 −2.23 −1.38
Pseudo/Input = 1 −2.22 −2.18 −1.94
Pseudo/Input = 2 −2.19 −2.15 −1.93
Input/Query = 2
Pseudo/Input = 0 −2.40 −2.45 −2.30
Pseudo/Input = 1 −2.40 −2.45 −2.49
Pseudo/Input = 2 −2.33 −2.37 −2.49
Input/Query = 3
Pseudo/Input = 0 −2.40 −2.48 −2.83
Pseudo/Input = 1 −2.41 −2.48 −2.93
Pseudo/Input = 2 −2.33 −2.38 −2.93

experiments (Table 1). The cases shown here are the spa-
tial scaled pseudo images with the best scaling factors. For
each method, multiple input images (all the cases where
Pseudo/Input = 0) improve the query accuracy. This shows
that more “positive” query information would result in bet-
ter query precision, regardless which scheme is in use. Next,
we examine the effect of pseudo images. Our scheme with
one pseudo image has the best accuracy in all Input/Query
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cases. However, the pseudo images do not improve the other
two methods as much. Even worse, more pseudo images
would degrade the query accuracy. The simulation results
also show that increasing pseudo images does not always
improve accuracy. Under our current scheme, one pseudo
image per input image is the best. Our conjecture to this
phenomenon is as follows. The pseudo image concept is
based on an assumption that the stable image features are
the features of similar values in human perception. This
assumption provides additional information to “guess” the
user intention in a query. However, too many pseudo im-
ages may overly weight the chosen features, not reflecting
their true weights.

For each query parameter set (Input/Query and
Pseudo/Input), we compare the results of different estima-
tion methods. Comparing the MARS-like method (Scheme
A) with the Gaussian-normalized method (Scheme B), we
observe that when input images are few, the MARS-like
scheme wins. In contrast, Scheme B wins when more input
images are provided. Since these two methods use the same
distance normalization procedure, the difference comes
from the weight computing procedures. When few images
are available for estimation, iterative training would provide
a better guess on the user perception. When more images are
provided by a user, the ranking-list-based Scheme A does
not provide as precise guess as the distance-based Scheme
B. Comparing the Gaussian-normalized scheme (Scheme
B) with our scheme (Scheme C), the former wins when in-
put images are few and loses when more images are pro-
vided. The two methods use the same distance definition
and the estimation procedure, so the difference comes from
the distance normalization procedures. It is reasonable that
the Gaussian-normalized scheme wins for few inputs cases,
because the distance metrics are optimized according to the
data distribution. This implicitly provides clustering infor-
mation of the database, and thus produces better results than
our method. However, feature distributions in a database
may not be the same as the distance distribution viewed from
the user perception for a particular query. This may explain
why our method wins when more input images are provided.
Our user perception (intention) estimation is based only on
the user provided information (not the entire database).

We conduct the same analysis on the SNR-scaled case
(Table 2), and similar conclusions can be drawn. How-
ever, there are two noticeable differences. The first one is
that in several test cases, Pseudo/Input = 2 outperforms
Pseudo/Input = 1 in the SNR-scaled case. The second is
that in most cases, the SNR-scaled pseudo images outper-
forms the spatial-scaled ones.

4.3.3 Observations on Positive-and-Negative Query Re-
sults

Next, we look into the Positive-and-Negative Query cases.
As mentioned in Sect. 4.2, the simulation is done using
the typical query scenario. For each positive-and-negative
query, there is zero or one negative image depending on

Table 2 Best log(ANMRR) of SNR-scaled pseudo images (positive-
only).

Scheme Scheme Scheme
A B C

Input/Query = 1
Pseudo/Input = 0 −2.23 −2.23 −1.38
Pseudo/Input = 1 −2.19 −2.18 −1.95
Pseudo/Input = 2 −2.18 −2.18 −2.00
Input/Query = 2
Pseudo/Input = 0 −2.40 −2.45 −2.30
Pseudo/Input = 1 −2.45 −2.49 −2.52
Pseudo/Input = 2 −2.47 −2.49 −2.52
Input/Query = 3
Pseudo/Input = 0 −2.40 −2.48 −2.83
Pseudo/Input = 1 −2.54 −2.63 −3.09
Pseudo/Input = 2 −2.63 −2.71 −3.11

Table 3 Best log(ANMRR) of spatial-scaled pseudo images (positive-
and-negative).

Scheme Scheme Scheme
A B C

Input/Query = 1
Pseudo/Input = 0 −1.97 −2.12 −1.39
Pseudo/Input = 1 −2.07 −2.21 −1.97
Pseudo/Input = 2 −2.06 −2.22 −2.00
Input/Query = 2
Pseudo/Input = 0 −2.67 −2.61 −2.40
Pseudo/Input = 1 −2.65 −2.71 −2.63
Pseudo/Input = 2 −2.64 −2.62 −2.60
Input/Query = 3
Pseudo/Input = 0 −2.72 −2.76 −3.09
Pseudo/Input = 1 −2.73 −2.76 −3.22
Pseudo/Input = 2 −2.62 −2.63 −3.21

whether the positive-only query is a perfect match or not.
Similar to what we did in Sect. 4.3.2, we first examine the
simulation results of positive-and-negative feedback with
spatial-scaled pseudo images (Table 3). For all schemes,
multiple input images improve the accuracy. Effects of
pseudo images are similar to that of the positive-only re-
sults. Our method seems to be able to utilize pseudo im-
ages better for improving the accuracy. For the other two
schemes, pseudo images do not provide significant improve-
ments. The ANMRR values show that the Pseudo/Input = 1
cases give the most significant improvement. Additional
pseudo images offer much less improvement if any.

Comparing Scheme A (MARS-like scheme) with
Scheme B (Gaussian-normalized scheme), we found that
the Gaussian-normalized scheme wins in most cases. Our
explanation is that in our proposed procedure, the nega-
tive feedback does not participate in weights estimation.
Since the negative instances may be too diverse to be use-
ful in weighting estimation, their roles are more appropri-
ate when used in pruning. The simulation results seems
to prove this concept. Comparing Scheme C (our scheme)
with Scheme B (Gaussian-normalized scheme), the results
show that ours wins when sufficient input images are avail-
able. The ANMRR values show that the best accuracy is
the Input/Query = 3 case in our scheme. The reason is that
the pruning distance relies on the estimated distance func-
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Table 4 Best log(ANMRR) of SNR-scaled pseudo images (positive-and-
negative).

Scheme Scheme Scheme
A B C

Input/Query = 1
Pseudo/Input = 0 −1.97 −2.12 −1.39
Pseudo/Input = 1 −1.95 −2.17 −2.03
Pseudo/Input = 2 −1.94 −2.17 −2.04
Input/Query = 2
Pseudo/Input = 0 −2.67 −2.61 −2.40
Pseudo/Input = 1 −2.60 −2.71 −2.67
Pseudo/Input = 2 −2.63 −2.73 −2.66
Input/Query = 3
Pseudo/Input = 0 −2.72 −2.76 −3.09
Pseudo/Input = 1 −2.89 −2.96 −3.47
Pseudo/Input = 2 −2.99 −3.05 −3.49

tion. Thus, the more precise distance function would lead to
a lower “mis-pruning” probability.

The ANMRR values shown in Table 4 for the SNR-
scaled pseudo images lead to similar conclusions as before.
First, multiple input instances improve query accuracy. Sec-
ond, our method benefits more from the pseudo images.
Third, the Gaussian-normalized scheme (Scheme B) wins in
almost all cases when comparing to the MARS-like scheme
(Scheme A). Fourth, our method (Scheme C) performs bet-
ter than the Gaussian-normalized when more input images
are available. Finally, our method has a significant perfor-
mance improvement at Input/Query = 3, which indicates a
good potential of our approach for even more input images.

4.3.4 Observations on Different Feedback Schemes

In Sects. 4.3.2 and 4.3.3, we discuss the effects of different
weights estimation methods in each specific scheme. In this
section, we will discuss the general effect of negative in-
stances and the generation of pseudo images.

Negative instances are important, because they tell us
about the “undesired” image properties (or image feature
values). That is, the user does not want pictures similar
to a negative image. However, the negative images do not
provide information about a particular feature whether it is
good for matching purpose or not. Two negative images
can be close or far away, but positive images should always
be close together on the user preferred features. The sim-
ulation results show that negative feedback improves query
accuracy in many cases, especially when enough positive in-
stances are given. If the number of input instances is small,
only our method can consistently improve the accuracy us-
ing the negative instances.

Although both multi-scale schemes that generate
pseudo images can enhance the query accuracy (especially
for our method), we notice that the SNR multi-scaled im-
ages not only produces better performance than the spa-
tially scaled ones, they also have consistently improved re-
sults. This may be due to the fact that the spatial-scaled im-
ages suffer from the aliasing effect when pictures are down-
sampled and thus image features are distorted more than
those of the SNR-scaled ones. Overall, Scheme C signif-

icantly improves the query accuracy by combining multi-
instance and pseudo-image concepts.

Note that our scheme does not produce as good accu-
racy as the other two schemes when very few samples are
available. This may due to the fact that our feature weights
are derived solely from the samples; no distance distribu-
tion information is used to normalize the weights. Our es-
timate is getting much better when the number of samples
increases. That is, our scheme is more suitable for multiple-
instance cases, which is the goal of this contribution.

4.3.5 Summary

Based on the above simulation results, we briefly summarize
our observations below.

• Distance-based weight estimation outperforms when
multiple input instances are available.
• Pseudo images improve query accuracy in many cases,

especially when our method is used with SNR scalabil-
ity.
• Experiments show that one pseudo image per input im-

age gives significant performance boost in most cases.
• Negative instances used as a pruning criterion produce

better results than those used as negative samples in
weight calculation.
• When input instances are few, negative feedback may

even degrade the performance of the MARS-like and
the Gaussian-normalized schemes.
• When sufficient input instances are available, the

Gaussian normalized feature distance does not provide
as precise estimation as our method.
• The SNR multi-scaled pseudo images provide better

ANMRR values; they also lead to more consistent im-
provements in accuracy.

An overall comment about the performance of our
scheme is as follows:

• When only one input image is available, our scheme
looses about 0.8 in log(ANMRR). However, with the
assistance of pseudo images, the gap shrinks to about
0.25.
• In the case of two input images, our scheme improves.

Without pseudo images, ours looses about 0.2; with
pseudo images, ours may win or loose in the average
of 0.05.
• When we have three input images, our scheme wins.

The figure in log(ANMRR) is about 0.3 to 0.5.
• From the above results, we can summarize that Scheme

C is good for sufficient query images. For small-sample
cases, though not as good as other schemes, it produces
comparable accuracy by including pseudo images.

4.4 Another Distance Measure

In Sect. 3, we assume the matching function produces dis-
tances that satisfy triangular inequality. This may not be
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necessary because a CBIR system may adopt non-linear op-
erations either in the extraction or in the matching process.
In this section, we define the scatter number by a statisti-
cal approach, which does not rely on the geometry theorems
and eliminate the sinusoidal operations. Its calculation is
thus simpler.

The assumptions and the conjectures are the same as
described in Sect. 3, except that we do not assume the dis-
tances satisfy the triangular inequality. To measure the
sparseness of a set of feature points, firstly we define a value
scatti j which represents how far the instance qi is away from
the rest of the query instances:

scatti j = µi j + σi j,

where

µi j =
1

n − 1

n∑
k=1,k�i

d j( fi j, fk j)

σ2
i j =

1
n − 1

n∑
k=1,k�i

(d j( fi j, fk j))
2 − µ2

i j.

The scatti j is similar to the average distance, except that it
includes the variation information. The second term (stan-
dard deviation) is added into this measure because experi-
ments indicate that an “inconsistent” feature (large standard
deviation) is less important.

Then we express the scatter number in a conservative
way: calculate the closeness between the given instance and
any other point in the set and pick up the maximum; that is,

s j = max
∀i

scatti j.

Note that in this method, the normalization factor is also
canceled in each term of the weighted distance function.

We call this weighting scheme as scheme D. The sim-
ulation results of scheme A, B, and D are reported in our
previous paper [19]. Since the results of scheme A and B
are the same as listed in Table 1 to 4, we only show the
results of scheme D in Table 5. By comparing to scheme
C in Table 1 to 4, we may see that these two schemes have

Table 5 Best log(ANMRR) of scheme D for all query schemes.

Spatial SNR Spatial SNR
scaling scaling scaling scaling
without without with with
negative negative negative negative

Input/Query = 1
Pseudo/Input = 0 −1.38 −1.38 −1.39 −1.39
Pseudo/Input = 1 −1.94 −1.95 −1.97 −2.03
Pseudo/Input = 2 −1.93 −1.99 −1.99 −2.06
Input/Query = 2
Pseudo/Input = 0 −2.30 −2.30 −2.40 −2.40
Pseudo/Input = 1 −2.51 −2.52 −2.65 −2.67
Pseudo/Input = 2 −2.50 −2.52 −2.65 −2.66
Input/Query = 3
Pseudo/Input = 0 −2.83 −2.83 −3.09 −3.09
Pseudo/Input = 1 −2.92 −3.07 −3.21 −3.49
Pseudo/Input = 2 −2.92 −3.10 −3.23 −3.51

similar accuracy but scheme D has the computational advan-
tage. The bold-faced values represent the better ANMRR in
scheme D; while the underlined values represent the better
ANMRR in scheme C.

5. Conclusions

In this paper, the multi-instance image retrieval problem was
investigated. The main contributions of this paper are listed
below.

1. Two distance-based methods to estimate the user per-
ception based on the given positive instances were pro-
posed. One is a geometric approach and the other is a
statistical approach.

2. Two schemes for generating consistent pseudo images
were investigated. We showed that the pseudo image
concept improves the query accuracy in many cases,
particularly when the query set is too small.

3. A method of pruning irrelevant outcomes based on the
given negative images was proposed.

The first concept was realized by analyzing the scattering
magnitude of the query instances in the feature space. Our
conjecture is that a scattered feature implies less importance
in deciding the perceptual similarity. The second concept
was realized through the notion of feature stability. Our
conjecture is that a stable image feature (for a particular
image) would have similar numerical values (small scatter
numbers) at different spatial or SNR scales of the same im-
age. Therefore, pseudo images were created by scaling the
original image at various spatial and SNR resolutions. The
third one was realized by creating pruning regions in the
combined feature space. Our conjecture is that negative in-
stances carry only the information of the undesired image
feature values. Namely, undesired images should not look
like the opposites of positive images. Because negative im-
ages may be close or far away, they are only suitable for
pruning not for distance estimation.

All the preceding concepts can be integrated into one
algorithm using the same basic structure. We examined the
performance of our scheme using the ANMRR criterion.
Simulations showed that multiple instances are helpful in
achieving better query accuracy. In the case that the user
input set is small, the synthesized pseudo images improve
the results in most cases. As we conjectured, negative feed-
backs used for pruning performs better than those used for
weight estimation.

Additional conclusions are:

1. the SNR multi-scaled images generally perform better
than the spatial multi-scaled ones for pseudo images
purpose;

2. although distance normalization is conceptually useful
for weight estimation, simulations show that normal-
ization is not always needed for producing good re-
sults;

3. our method does not require a priori information about
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the data distribution in the database, which not only
reduces the computational complexity but also makes it
more suitable for searching in a distributed networking
environment.
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