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On the Design of Pattern-based Block Motion
Estimation Algorithms

Jang-Jer Tsai, Member, IEEE, and Hsueh-Ming Hang, Fellow, IEEE

Abstract—Pattern-based block motion estimation (PBME) is a
critical element in the contemporary video coding system because
it typically dominates the coding efficiency and the computing
power. Therefore, many proposals have been suggested to reduce
its computational complexity, but most of them are devised based
on experimental data or heuristic ideas. In this letter, we look
into every component of a typical PBME algorithm and fine
tune the major components systematically to achieve the optimal
or nearly optimal results. Our methodology is developed based
on our proposed analytical model together with statistical tools.
First, we use the analytic model to analyze and design effective
genetic-algorithm-based search patterns. Moreover, we propose
an adaptive switching strategy that dynamically switches between
two search patterns. Second, we extend our PBME model to
evaluate the efficiency of starting (initial search) points. A near
optimal set of starting points is progressively identified. Last, we
study the early termination threshold technique and suggest a
metric in selecting an effective threshold. An accurate threshold
mechanism is thus constructed. Combining all these techniques,
we develop a PBME algorithm that outperforms most popular
algorithms.

Index Terms—Early termination, genetic pattern searches,
modeling, motion estimation, starting points.

I. Introduction

MODERN video compression systems convert the huge
digitized video data into a small-size sophisticated bit-

stream by using the well-known block based hybrid coding
(BHC) structure [1]. In general, a BHC video system com-
prises two major modules: intra frame coding and inter frame
coding. Block based motion estimation (BME) algorithm
plays the key role in the inter-frame coding. Yet, BME is
computational intensive; thus, a myriad of fast BME have been
proposed.

The most popular class of the BME algorithm is the pattern-
based block motion estimation (PBME), which is typically a
multi-step process. Often, three sets of tools are included: (1)
search patterns [3]–[10], (2) starting points [3], [4], [18], [19],
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and (3) early termination thresholds [3], [4], [18], [20]. Despite
the prosperity of PBME, most PBME algorithms are devised
based on heuristics and speculation on experimental data. In
this letter, we use the analytical model in [2] to scrutinize
the underneath mechanism in each tool. Then, by adopting a
step-by-step systematic approach, we improve each tool. At the
end, we combine these tools together to form a very effective
PBME algorithm.

The rest of this letter is organized as follows. Section II
reviews our previously proposed analytical model [2] for
PBME algorithms. In Section III, we propose two sets of the
genetic-algorithm-based search patterns for different types of
moving image sequences. Then, we design a pattern switching
strategy, which dynamically changes search patterns based on
the real-time video statistics. Section IV examines the impact
of starting (initial) point set and suggests a starting point set
that produces outstanding search results. Section V suggests a
threshold predictor that can be used in the early termination
algorithm. Combining all these techniques together, Section VI
presents a complete PBME algorithm and its performance.

II. Modeling of PBME Algorithms

ASP = C1 ×
∑
x,yεA

SFS(x, y) × WFSA(x, y) + C2 (1)

SFS(x, y) =
1

|x|5/3+ζx

1
|y|5/3+ζy∑

x′,y′εA

1
|x′|5/3+ζx

1
|y′|5/3+ζy

(2)

PMV = median(MVL, MVU, MVUR) (3)

where MVL, MVU , and MVUR are the motion vectors of the
left, up, and up-right block neighbors to current block, as
illustrated by Fig. 9.

In [2], we propose a mathematical model [expressed by (1)]
that can predict the average number of search points (ASP)
produced by a PBME scheme. This model consists of two
components: a probability distribution function SFS(x, y) of
MVs [approximated by (2)], and the minimal number of search
points needed to identify an MV located at (x, y), WFSA(x, y)
(called weighting function) which is search algorithm (SA)
dependent. In (1), (x, y) are the relative coordinates of which
the origin is the predicted motion vector [PMV, defined by
(3)]. The parameters (C1, C2) are obtained empirically by
training methods. Note that C1 is always positive because ASP
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Fig. 1. Contour plots of WF for ERPS and PHS.

TABLE I

The Test Sequences and Their Settings

Abbreviation Sequence Bit
Rate
(kb/s)

Frame
Rate
(frames/s)

Number
of
Frames

PSNR

CT256 Container 256 7.5 300 39.56
CT40 Container 40 7.5 300 32.04
HL40 Hall 40 7.5 300 33.55
MD96 Mother and

Daughter
96 10 300 39.80

CG112 Coastguard 112 30 300 29.08
FM512 Foreman 512 30 300 34.06
FM1024 Foreman 1024 30 300 36.56
FB1024 Football 1024 30 90 35.28
FG768 Flower Garden 768 30 250 26.33
ST1024 Steven 1024 30 300 29.48

and the sum of products of SFS(x, y) and WFSA(x, y) are always
positively correlated.

Equation (2) is derived based on the motion vectors ac-
quired from image data. In (2), (x, y) and (x′, y′) are relative
coordinates with respect to PMV, and A is the search area. The
parameters (ζx, ζy) are obtained by numerical methods so that
the variances of SFS (x, y) match those of the MVs acquired
by full search (FS) applied to a specific sequence.

The weighting function, WFSA(x, y), is the minimal number
of search points produced by a specific PBME algorithm when
the argument (x, y) is the target MV. The weighting function
is typically obtained by analyzing the search procedure. Fig. 1
shows the contour plot of the weighting functions of two
popular pattern search algorithms, point-oriented hexagonal
search (PHS) [7] and easy rhombus pattern search (ERPS).
The ERPS adopted here is the adaptive rood pattern search in
[4] but using PMV as the sole starting point. The value marked
on a contour represents the minimal search points required for
a search algorithm to move from the origin to a point on the
contour. The weighting function is a discrete function, and
the data points exist only on the integer coordinates. For the
ease of visualization, the data points are interpolated to form
continuous contours. Details of this model are referred to [2].

Table I shows the test sequences in our experiments, coded
at typical bit rates (to produce acceptable PSNR quality). They
are coded by a MPEG-4 SP@L3 encoder. All the sequences
are in the CIF (352 × 288) format. Only the first frame is
coded as the I frame, and all the remaining frames are coded
as the P frames. The motion vector search range is chosen to

be 16, the initial quantization step size is set to 15, and the
block size is 16 × 16. The quantization step is adjusted by a
rate controller to achieve the desired bit rate. The coded video
peak signal-to-noise ratio (PSNR) ranges roughly from 26 dB
(poor yet acceptable) to 40 dB (visually the same as original).
The frame skip and the block skip (macroblock not coded)
modes are not in use.

III. Adaptive Genetic Pattern Search Algorithms

A. Genetic Search Patterns

A preferred pattern search should have the following de-
sirable properties: 1) it consumes less computing power, 2) it
does not degrade the video quality, and 3) it costs fewer bits
in coding the MV vectors.

In [2] and [10], after analyzing the weighting functions
of several popular search algorithms (Fig. 1), we find that
ERPS has the smallest ASP values for the MVs near the
origin (PMV) and PHS has the smallest ASP for the points
away from the origin. These observations are consistent with
the well-known facts that PHS moves faster than many other
algorithms, thus can quickly reach the distant locations, and
ERPS examines fewer points when the target MV is close to
the origin. Ideally, a good PBME algorithm should have small
weighting function values for all locations in the search area,
particularly for the high probability target MVs.

A search algorithm degrades the video quality when it is
trapped into a local optimum point. To reduce such cases,
a search algorithm shall check all neighboring points of the
target when it decides to terminate the search process. The
dilemma is that the increased checking points also increase
computation. To achieve a balance between speed and quality,
a PBME algorithm shall carefully select the number and the
locations of check points at the termination step.

A search algorithm should make good use of the uneven MV
distribution to reduce the entropy coding bits. For example,
if the (best) MVs cluster around a predictable location, it
takes fewer bits in encoding MVs and less computing power
in finding MVs. Because the probability density function of
typical MVs peaks at around the PMV, a PBME algorithm
with small weighting function near the starting point (PMV)
would consume less computing power and fewer coding bits
on the average. For convenience, therefore, our PBME model
is centered at PMV.

Based on the above design considerations, we adopt the
genetic algorithms [22] to modify the traditional PBME algo-
rithms. The simplest genetic algorithm contains only a
mutation-and-competition loop. When a survivor (parent) pro-
duces a mutant (a child), the survivor competes with its own
mutant to decide the next survivor (next-stage parent). The
process stops when the survivor beats all its mutants. In con-
trast, the traditional PBME algorithms check all points in the
search pattern and move the center (origin) to the winner until
the central point beats all the other points in the search pattern.

A traditional PBME algorithm typically consists of two
search patterns, the large search pattern and the small search
pattern. The large search pattern is used for the coarse (regular)
search and the small search pattern is used for the fine
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Fig. 2. Flowchart of GRPS.

(terminating) search. In converting a traditional search algo-
rithm into a genetic one, we blend the genetic algorithm into
the coarse search stage. The central point (which is the winner
of the previous search step) in the search pattern is the parent
in the genetic search and all the other points are the child
candidate set. Instead of calculating the block matching cost of
all the child candidates and deciding the best MV, we randomly
select a point (a mutant) from the child candidate set, calculate
its block-matching cost, compare its cost with the parent’s
cost (competition), and decide the survivor (next parent). This
process continues until all the points in the current child set
are examined. If the parent beats all its children, it is then
declared to be the winner. In addition, a typical terminating
search checks all the points in the small search pattern to
avoid trapping into the local minimum. But recent studies [7]
suggest that it is often sufficient to check only the candidate
points near the smallest error points in the large pattern.

Because of the computational advantage of the genetic
algorithm, we convert ERPS into GRPS (genetic-based ERPS)
and PHS into GPHS (genetic-based PHS), respectively.

The flowchart of GRPS is shown in Fig. 2, and its associated
search pattern is shown in Fig. 3. In Step 2 (S2), it randomly
checks one point (black, for example) among all search points
in Fig. 3(a). The condition of Step 3B (S3B) is whether all
the (black) points in Fig. 3(b) have been checked.

The flowchart of GPHS is shown in Fig. 4 and its associated
search patterns are shown in Fig. 5. Steps 2 and 3 (S2 and S3)
are similar to those of GRPS but with a different large search
pattern. In Step 4 (S4, refinement), as suggested in [7], we
first calculate the cost function, so-called normalized group
distortion (NGD) defined by (4) in [7], for all the grey points
in Fig. 5(b). Then, we select the smallest NGD point from
points a to f, and the smaller NGD point from points g and h.
These two points constitute the small search pattern. Herein,
the NGD of points a to h is calculated using the SADs in the
Groups A–H in Fig. 5(c) and (d), respectively.

Fig. 3. Search patterns for GRPS.

Fig. 4. Flowchart of GPHS.

Fig. 6 shows the WF of GRPS and GPHS. Compared with
the WF of the nongenetic PBME algorithms in Fig. 1, GRPS
has the smallest values around the center but GPHS has the
smallest values at far-away locations. Experimental results
verify our above observations on WF.

Moreover, the computational overhead of the genetic-based
algorithms is very small because we do not use the entire
conventional genetic algorithm. Other than a few additional
comparisons of the matching errors, the only computational
overhead is the random selection of a mutant from the child
set and this process can be implemented by a simple pseudo
number generator.

B. Adaptive Pattern Switching Strategy

Because the contents of video sequences vary drastically,
one single search pattern may not produce the best result in
terms of speed and PSNR. Thus, the adaptive pattern-switching
search algorithms were proposed [11]–[17]. These algorithms
are empirically constructed and the switching criterion is often
based on block (feature) classification. Few papers have clear
and strong evidence as why certain block features can be used
as the switching criterion. Also, there are few discussions on
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Fig. 5. Search patterns of GPHS.

Fig. 6. Contour plots of the weighting function for GRPS and GPHS.

how to optimally choose the search pattern set. Therefore, we
like to explore these issues based on our previous study [17].

We look for an adequate index that can be used to decide
the right instant to switch between two search patterns. The
target is lowering the computational complexity. That is, if
Search Algorithm 1 (SA1) is in use, would the average search
points be fewer than that produced by using Search Algorithm
2 (SA2)? Based on our average search point (ASP) model, (1),
the difference in ASP is expressed by (4). Note that WFSA1 and
WFSA2 depend only on search algorithms (SA). But because
SFS is a function of the MV variance, DASP is thus picture-
dependent. The parameter C1 is fixed for a video sequence.
Dividing DASP by C1, we obtain the switching index (IASP)
defined by (5).

DASP = C1 ×
∑

x,y ε A

SFS(x, y) × (WFSA1(x, y) − WFSA2(x, y))

(4)

IASP = DASP/C1. (5)

GRPS and GPHS are chosen as the basic search patterns
owing to their short-range and long-range search performance.
Then, the IASP between GRPS and GPHS, drawn against

Fig. 7. IASP between GRPS and GPHS w.r.t. MV variance or MV standard
deviation.

two variables, MV variance or MV standard deviation, are
the solid contours in Fig. 7. In Fig. 7(a), the x-axis is the
variance of the MV horizontal component and the y-axis is
the variance of the MV vertical component. In Fig. 7(b),
the axes are the MV standard deviations along the horizontal
direction and the vertical direction, separately. When IASP >

0, GRPS outperforms GPHS in terms of ASP, and when IASP

< 0, GPHS is better. Therefore, the switching criterion is the
boundary that IASP equals zero. For the GRPS and GPHS pair,
the threshold, IASP = 0, is approximated by a straight black
dashed line (6) in Fig. 7(b). The red plus marks denote the MV
variances or standard deviations of the test video sequences
and the yellow dots denote the MV variances or standard
deviations of the frames in the test video sequences. Because
the IASP of most test sequences and frames are larger than 0,
GRPS is chosen more often. Only in the extreme cases, GPHS
stands out.

U · STDX + V · STDY = W. (6)

In the real-time applications, the MV standard deviations
of the current frame are not available before its MVs are
all calculated. Fortunately, the motion characteristics in an
image sequence typically change gradually [3]; therefore, the
MV standard deviations in the neighboring spatial or temporal
areas are generally similar. After testing a few MV standard
deviation predictors, we found that the MV standard deviations
of the previous frame are good predictors to its values in the
current frame.

Furthermore, the MV characteristics may vary in different
parts of a frame. Hence, we can switch the search pattern
for each block. Because the MV characteristics in the nearby
spatial/temporal area tend to be similar, the standard deviations
of motion vector MVL, MVU , and MVP in Fig. 9 are used for
the block level pattern switching criteria. The so-called double
level pattern switching strategy for AGPS (abbr. DL AGPS) is
thus proposed and its flowchart is shown in Fig. 8. If the previ-
ous frame has small MV standard deviations (MV STDX

frame
and MV STDY

frame), we incline toward using GRPS as the
search pattern with the exception that the MV standard de-
viations derived from the nearby blocks (MV STDX

block and
MV STDY

block) are very large. On the other hand, if the
previous frame has large MV standard deviations, GPHS is
often chosen unless the MV standard deviations derived from
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Fig. 8. Flowchart of the double level adaptive genetic pattern search (DL
AGPS).

the neighboring blocks are very small. The parameter values
of U, V, Wframe, Wblock1, and Wblock2 are derived from data by
using the numerical method. In our experiments, U = 1, V = 1,
Wframe = 12, Wblock1 = 8, and Wblock2 = 16.

The computational overhead of the proposed adaptive pat-
tern selection strategy is very small. At the frame level, the
frame MV variance/standard deviation is calculated once per
frame. At the block level, we only use the upper, the left,
and the colocated block motion vectors to calculate the MV
variance/standard deviation. In computer simulation, the run
time profiling shows that the overhead of the proposed adaptive
strategy consumes only about 2% of the total computation used
by the ME module.

IV. Starting Point Selection

The impact of starting points or initial points on fast search
algorithms has been studied by many researchers [3], [4],
[18], [19]. Typically, the starting point is predicted by using
a combination of the MVs of several neighboring blocks. The
most probable MV estimated by this type of MV predictor
is used as the starting point for PBME algorithms. Although
many MV predictors have been suggested, they are derived
mostly based on experimental data. Here, we design a criterion
that evaluates the effectiveness of MV predictors and propose
a systematical approach that constructs the optimal starting
point set (SPS).

We again use the proposed PBME model (first method in
[2]) in solving the starting point selection problem. Because
the MV field acquired by FS is fixed for a given video
sequence, a different starting point only does a translational
shift on the motion vector distribution. Given two starting
points, SP1 and SP2, their difference in ASP (EASP) can
be represented by (7). Let SP2 be a fixed starting point for
comparison purpose; (7) thus becomes (8), in which η is a
constant. Rearrange (8), we obtain GASP defined by (9), which

Fig. 9. Motion vector predictor candidates in the current frame, the previous
frame, and the frame before previous frame.

is proportional to the ASP using SP1. Thus, GASP is used as the
performance assessment criterion for starting point evaluation.

EASP = C1 ×
∑

x,y ε A

((SFS−SP1(x, y)−SFS−SP2(x, y))× WFSA(x, y))

(7)

EASP = C1 ×
∑

x,y ε A

(SFS−SP1(x, y) × WFSA(x, y)) − η (8)

GASP = (EASP + η) /C1. (9)

Because WF is fixed for a specific algorithm and only
SFS−SP1(x, y) may vary, GASP in (9) is a function of the
MV characteristics. The MV characteristics are either the MV
variances or MV standard deviations calculated based on the
MVs w.r.t. a specific starting point (SP1). And the MVs are
acquired by using FS on the selected sequence.

Fig. 9 shows the MV candidates that are often considered in
starting point selection. They are the MVs of the neighboring
spatial/temporal neighboring blocks. And the most commonly
used mathematical function includes median(.) and mean(.).
Combining them together, there are many possible MV pre-
dictors. In our investigation, we calculate the GASP of 36 well-
known and best performed MV predictors applied to the test
sequences using the weighting function of GRPS and GPHS.

We find that MV pred21 (mean value of MVU , MVL, and
MVP ), MV pred23 (mean value of MVU , MVL and two MVP )
and MVpred28 (mean value of MVPU , MVPD, MVPL, MVPR,
MVPUL, MV PUR, MVPDL, MV PDR, and MVP ) have the smallest
average GASP among all the MV predictors. Together with the
well-known PMV (MVpred16) and ZMV (MVpred15), these five
MV predictors form the candidate set for the starting points.
Note that ZMV is the abbreviation for zero motion vector (0, 0).

NTSP = NSPS + NASP − 1. (10)

We use the initial candidate set in the following way. A
proposed BME algorithm examines all MV candidates in the
candidate set and then uses the best candidate as the starting
point for the subsequent search procedure. The total search
point number (NTSP) is shown by (10). It equals the size of
starting point set (NSPS) plus the number of average search
points (NASP) produced by a specific search algorithm minus
one, where “minus one” represents the initial point counted in
NASP.

A well-designed starting point set should decrease NASP

more than NSPS, the increased size of the starting point set.
We develop a systematic approach to find the optimal SPS.
It is an add-on approach. At the beginning, there is only one



TSAI AND HANG: ON THE DESIGN OF PATTERN-BASED BLOCK MOTION ESTIMATION ALGORITHMS 141

Fig. 10. Flowchart of constructing SPS.

Fig. 11. SAD candidates in the current frame, the previous frame, and the
frame before the previous frame.

MV in the SPS. We calculate its NTSP using a certain search
algorithm. After a number of simulations, we retain a few best
performers. We then add a second MV to each of these sets
and evaluate their NTSP again. We continue adding new points
to each set until the NTSP does not decrease with additional
MV in that set. This procedure is described by the flowchart in
Fig. 10. In theory, this procedure does not guarantee that the
final set is globally optimal because our set is progressively
constructed. However, our experiments indicate that the results
are quite good.

When we apply this procedure to construct SPS for DL
AGPS, the SPS for DL AGPS is

{
PMV, MV pred23

}
. The

order in the set is the order in search. The DL AGPS with
SPS outperforms DL AGPS by 5% in ASP with 0.12 dB
PSNR gain. Also, we observe that a fast-moving pattern

Fig. 12. Best 2-D and 3-D SAD predictor versus SADC.

search needs only a small SPS because the search algorithm
can cover a large search area quickly without the help of
additional starting points.

V. Early Termination Mechanism

The early termination mechanism terminates the search
process when the block-matching error produced by a MV
(in the search area) is smaller than a pre-chosen threshold.
And this MV is accepted as the best MV. Clearly, there is
a trade-off between the MV quality (matching error) and
the computational speed. Thus, the challenge is to find the
termination threshold that maximizes the speed gain and
minimizes the quality degradation. In this section, we set up a
systematic method to find the nearly optimal early termination
threshold (ETT).

The most commonly used block matching error is the sum
of absolute difference (SAD). Due to the correlation among
the spatial/temporal nearby blocks, [18] proposed a general
form (11) of ETT. It suggests that the threshold is a function
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TABLE II

The Performance of FS, DS, AIPS-MP, ARPS-ZMP, and Our Proposed Algorithm

Normal FS DS AIPS-MP ARPS-ZMP Ours
Sequence ASP PSNR ASP PSNR ASP PSNR ASP PSNR ASP PSNR
CT256 1024 39.56 13.81 39.51 1.63 39.64 3.67 39.56 1.36 39.63
CT40 1024 32.04 15.03 31.92 1.70 32.87 5.58 32.87 1.63 32.87
HL40 1024 33.55 15.38 34.25 2.14 34.95 5.15 34.84 1.56 35.03
MD96 1024 39.80 14.85 39.99 2.05 40.20 3.63 40.26 1.48 40.21
CG112 1024 29.08 15.09 29.14 4.06 28.89 9.93 29.07 2.23 28.99
FM512 1024 34.06 16.17 34.06 4.80 33.79 9.98 33.84 2.54 33.93
FM1024 1024 36.56 15.76 36.59 4.77 36.45 9.66 36.37 2.48 36.49
FB1024 1024 35.28 22.36 34.93 9.01 34.58 20.03 34.56 5.09 34.85
FG768 1024 26.33 15.30 26.18 3.83 26.17 7.18 26.18 3.84 26.18
ST1024 1024 29.48 16.96 29.44 5.64 29.04 11.20 28.97 2.97 29.40
Average 1024 33.57 16.07 33.60 3.96 33.66 8.60 33.65 2.52 33.76

of the SAD and the MV of the neighboring blocks

T = min

{
max

{
f

(
SAD1,..., SADi,..., SADn,

MV1,..., MVi,..., MVn

)
, Tmin

}
, Tmax

}

(11)

where SADi and MVi, respectively, are the SAD and MV of a
neighboring block labeled by i, and Tmin and Tmax stand for
the lower and the upper bounds of the threshold, respectively.
In practice, most researches use only the SAD predictor

ρ =
E

[
(SADpred − E[SADpred]) × (SADc − E[SADc])

]
√

E[(SADpred)2]−E2[SADpred]×
√

E[(SADc)2]−E2[SADc]
. (12)

To find the best threshold predictor, we use the correlation
coefficient (12) between the SAD predictor (SADpred) and the
best SAD acquired using FS (SADc, as shown in Fig. 11) as the
measure for the effectiveness of this threshold, wherein E[.]
represents the expected value operation. First, we perform FS
on the test sequences in Table I to obtain the SAD values of
all blocks. For each of the SAD predictors, we calculate its
correlation with the actual SAD (SADC) of the corresponding
block. The one with highest correlation coefficient (closer to 1)
is the best SAD predictor. By using the regression method, we
find an approximation function (predictor) that best describes
the relation between the predicted SAD and SADC. Also, we
set an upper bound for the threshold estimate to prevent the
quality loss in the high ETT cases. And at last, we fine-
tune the predictor coefficients (slope and offset) to achieve the
desired speed and quality trade-off. This fine-tuned function
thus serves as the early termination threshold.

An ETT predictor often consists of two elements: (1) a
selected SAD set of nearby blocks, and (2) a mathematical
function operating on the selected SAD set. The most com-
monly used mathematical functions are mean(.), median(.),
min(.), and max(.). The most commonly used 14 neighboring
SADs are shown in Fig. 11. Combining them together, there
are numerous possibilities. Moreover, we can insert different
weights in front of each block SAD, which leads to enormous
possible forms of the SAD predictors. In our letter, we select
55 representative SAD predictors and calculate the correlation
coefficients between the selected SAD predictors and SADC.
Among the 55 selected SAD predictors under consideration,
SADpred15 (mean SAD of the upper and left blocks) is the

best predictor in 2-D cases and SADpred35 (median SAD of the
upper, left, and two previous blocks) is the best predictor in
all cases (2-D and 3-D cases). Herein, the 2-D cases only use
the SADs of the blocks in the same frame, and the 3-D cases
can also use the SADs in the previous frames.

To produce a better SAD predictor on SADC, we have tried
the multi-dimensional regression method. But we find that
the linear regression is sufficient to have a pretty accurate
approximation. Consequently, (13) is the predictor of choice

SAD
Linear−predicted
th = K1 × SADpred + K2 (13)

where K1 and K2 are two constants divided by linear regres-
sion.

To check the effectiveness of these predictors, we calculate
the mean and the standard deviation of both the best 2-D and
3-D SAD prediction errors. In Fig. 12, each dot represents the
SAD pair (SADpred, SADC) of a block. The star mark at the
center of a vertical bar represents the mean of SADC, and
the bar length represents the standard deviation of prediction
errors. Obviously, Fig. 12 shows that the standard deviation
becomes larger when SADpred increases. This implies that
for large predicted SAD values, their prediction accuracy is
lower. Hence, to ensure a high MV quality, we propose an
upper bound in (14) using the average SAD of all coded
block in the same frame

SAD
Upper−bounded
th =

∑NC−1
i=1 SADi

Nc − 1
+ K3 (14)

where SADi is the SAD of the ith block in the current frame,
K3 is the allowed maximum early termination error offset, and
Nc denotes the current block index in a frame. Finally, the early
termination threshold (ETT) is defined below by (15).

T = SADth = min
(
SAD

Linear−predicted
th , SAD

Upper−bounded
th

)
.

(15)
The parameter values are empirically decided: K1 is set to

1, K2 is set to 384, and K3 is set to 512. Under this setting,
we achieve a good balance between speed and quality.
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VI. A PBME Algorithm with All Features

We have discussed in the previous three sections three
techniques that reduce the computations of a PBME algorithm.
They are (1) adaptive genetic pattern search, (2) starting point
set, and (3) early termination mechanism. We now examine the
performance of the PBME scheme with all the best selected
tools.

The performance of FS, DS [9], ARPS-ZMP [3], AIPS-
MP [4], and the DL AGPS with SPS and the 3-D ETT
(our proposed best algorithm with all features) are shown
in Table II. Experimental results show that the proposed
algorithm outperforms ARPS-ZMP by 242% at average search
points, AIPS-MP by 57%, DS by 538%, and FS by 405 times
and the average PSNR quality is slightly better (0.10–0.19 dB)
than all the other algorithms including FS. This may be due
to the fact that our scheme often prefers a smaller value MV,
which requires fewer bits in coding. And a few additional
bits are available for texture (DCT coefficients) coding, which
results in better overall PSNR.

VII. Conclusion

In this letter, three important techniques have been investi-
gated for reducing complexity of pattern-based block motion
estimation (PBME). They are adaptive pattern search, starting
point selection, and early termination. The prior arts in design-
ing these schemes often based on heuristic reasoning and/or
speculation on the collected data. The contribution of this letter
is to re-examine these techniques using a systematic approach.
The adopted approach is built based on analytical model and
statistical tools. Optimal or nearly optimal solutions are thus
proposed. Based on our previous motion estimation model and
search pattern analysis [2], [10], we impose the genetic search
structure on the conventional ERPS and PHS schemes to
reduce computation. Furthermore, a pattern switching strategy
based on the on-line MV statistics is proposed. A well-chosen
starting point set indeed reduces the average number of search
points. A step-by-step procedure is proposed to find the best
starting point set. The so-called early termination can further
improve the search speed. We suggest a metric (correlation
coefficient) to identify the best predictor for determining the
termination threshold. At last, a PBME algorithm combining
all the above features is examined on the MPEG-4 platform.
Simulations show that the search speed of the proposed
algorithm is much faster than any previous search algorithm
and its coding quality is kept at about the same PSNR level.
All in all, the experimental results of our proposed algorithm
show that our design approach for PBME is effective.
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