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a b s t r a c t

A rate-distortion model for describing the motion prediction efficiency in interframe wavelet video cod-
ing is proposed in this paper. Different from the non-scalable video coding, the scalable wavelet video
coding needs to operate under multiple bitrate conditions and it has an open-loop structure. The conven-
tional Lagrangian multiplier, which is widely used to solve the rate-distortion optimization problems in
video coding, does not fit well into the scalable wavelet structure. In order to find the rate-distortion
trade-off due to different bits allocated to motion and textual information, we suggest a motion informa-
tion gain (MIG) metric to measure the motion prediction efficiency. Based on this metric, a new cost func-
tion for mode decision is proposed. Compared with the conventional Lagrangian method, our
experiments show that the proposed method is less extraction-bitrate dependent and generally improves
both the PSNR performance and the visual quality for the scalability cases.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Over the past few years, multimedia delivery becomes an impor-
tant class of wireless/wired internet applications, for example,
mobile video and digital TV broadcasting. To overcome the con-
straints on transmission bandwidth and receiver capability, the
scalable coding technique was developed and adopted by the recent
international video standards. There are two major approaches on
scalable video coding: the DCT-based and the wavelet-based coding
schemes. These two coding schemes share many similar coding con-
cepts, especially in removing the temporal redundancy. The scalable
video coding (SVC) extension of the H.264/AVC is a representative
scheme of the DCT-based approach and has been accepted as the
ITU/MPEG standards in 2007 [1]. On the other hand, the wavelet-
based coding scheme is a relatively new structure and has its poten-
tial and advantages [2] as shown during the MPEG competition pro-
cess for standardization.

Discrete wavelet transform (DWT) has been successfully applied
to still image compression. By exploiting the inter-subband or intra-
subband correlation, the DWT transformed image signal can be
efficiently compressed by a context-based entropy coder, such as
EZW [3], SPIHT [4], and EBCOT [5]. Different from the DCT-based
JPEG image coding, the multiresolution property of wavelet trans-
form provides a natural way in producing scalable bitstreams. It en-
ll rights reserved.
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ables the spatial and the SNR scalability features in the well-known
JPEG2000 image coding standard [6]. In addition to the spatial
decomposition, DWT can also be applied along the temporal axis
and decomposes video frames into temporal subband signals. There-
fore, it provides the temporal scalability for videos. In the past 15
years, the temporal wavelet decomposition is refined by adopting
the motion compensated temporal filtering (MCTF) technique.
These schemes were proposed and improved by Ohm [7], Hsiang
and Woods [8], Secker and Taubman [9], and Xu et al. [10]. MCTF
can efficiently decompose video frames along the motion trajecto-
ries. After MCTF and spatial 2-D DWT, the original video frames
are transformed to spatio-temporal subband signals and com-
pressed by a context-based entropy coder [9,11]. This interframe
wavelet video coding scheme can achieve temporal, spatial and
SNR scalability goals simultaneously. Depending on the processing
order in the spatio-temporal domain, the scalable wavelet coding
methods can be classified to ‘‘t+2D” and ‘‘2D+t” structures [12]. In
this paper, we will focus on the t+2D structure.

The rate-distortion analysis of a scalable interframe wavelet
video coder is very different from that of a DCT-based coder owing
to the following two issues: inter-scale coding and open-loop
coding structure. In DCT-based video coders, such as MPEG-2 or
H.264, use the hybrid coding technique; all the temporal and
spatial prediction operations are basically block-based. Thus, it is
quite straightforward to perform the rate-distortion analysis along
the coding operation flow. On the other hand, in the interframe
wavelet coders, the temporal MCTF is performed block-wise, but
the spatial entropy coding is performed on the subbands. This
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inconsistent data partition increases the rate-distortion analysis
difficulty drastically. Wang and van der Schaar proposed a solution
in [13] to analyze the rate-distortion behavior across different cod-
ing scales for wavelet video coder. The second issue is that the
DCT-based video coder has a closed-loop coding structure. The pre-
diction errors within the loop can be controlled by adjusting coding
parameters [14]; thus, the optimal rate-constrained motion com-
pensation can be adaptively adjusted [15,16]. But the interframe
wavelet coding has an open-loop prediction structure and the
quantization process is performed after all the encoding operations
are completed. This open-loop scheme provides more flexibility on
bitstream extraction and robustness to transmission errors, but it
has no feedback path to provide useful information to adjust pre-
diction parameters in the encoding process. Therefore, it is difficult
to achieve the rate-distortion optimization target, especially in the
case of allocating bits between the motion and the texture data at
multiple operation points all at the same time. How to generate
adequate amount of motion information and decide the best pre-
diction modes for MCTF becomes a challenging problem in the
scalable interframe wavelet video coding.

Our objective is to develop a suitable mode decision method to
achieve the rate-distortion optimization goal in interframe wavelet
coding. Our approach is to derive an analytical model that de-
scribes the trade-off between the motion compensation bits and
the residual texture coefficients bits. We then allocate bits to each
category properly at different scalability dimensions. We first
examine the rate-distortion effect due to the increase or decrease
of motion information bits. Extending our previous work in [17],
we derive a quantitative expression to measure the motion predic-
tion efficiency. Most significantly, we give a theoretical explana-
tion to this metric from the entropy viewpoint. Based on this
finding, a new cost function is proposed. By minimizing the pro-
posed cost function, the best prediction mode is decided and the
corresponding motion vectors are chosen for the MCTF operation.
Compared with the mode decision procedure in the conventional
scalable wavelet video coder, the proposed method shows a PSNR
improvement for the combined SNR and temporal scalability cases.

The paper is organized as follows. Section 2 gives a brief review
of interframe wavelet video and the rate-distortion mechanisms in
video coding. In Section 3, we propose the motion information gain
(MIG) metric to measure the motion prediction efficiency. Accord-
ing to our source model, the MIG metric is further discussed from
the entropy viewpoint. Extending the MIG concept, we propose an
MIG-based cost function to decide the best prediction mode in Sec-
tion 4. Section 5 shows the experimental results and compares
both the PSNR coding performance and visual quality with the con-
ventional scheme. Finally, a conclusion is given in Section 6.

2. Rate control issues in scalable wavelet video coding

2.1. Brief introduction to interframe wavelet video coding

The most popular coding structure of interframe wavelet video
codec is the so-called ‘‘t+2D” structure as shown in Fig. 1. The order
Temporal
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Spatial
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Fig. 1. The t+2D coding structure of interframe wavelet encoder. The solid line and das
of ‘‘t+2D” implies the encoding operation order: the temporal anal-
ysis first and then the spatial analysis. The temporal analysis em-
ploys the MCTF technique. It decomposes a group of pictures
(GOP) into several temporal high-pass frames and one low-pass
frame along the motion vector trajectories. The motion informa-
tion portion is, in the conventional approach, non-scalable, which
is denoted as v in Fig. 1. Then, the spatial decomposition operation
(2-D DWT) is applied to the low-pass and high-pass frames to form
subbands for further quantization and entropy coding. With the
help of a scalable entropy coder, these spatio-temporal subbands
are compressed to a scalable bitstream, denoted as s in Fig. 1.
Therefore, the coded output bitstream consists of two parts, one
is the scalable bitstream for the texture information (s) and the
other is the non-scalable bitstream for the motion information
(v); together, they are denoted as {s, v}. To fulfill the application
requirements imposed on the video bitrates, image resolution,
and frame rate, the texture bitstream is truncated accordingly
but the motion bitstream remains intact. Therefore, the output bit-
streams of the bitstream extractor are fs00;vg; fs01;vg; . . . ; fs0n;vg to
match the scalable requirements r0, r0, . . . , rn, respectively, as
shown in Fig. 1. The truncation mechanism is designed to collabo-
rate with the scalable entropy coder.

The EBCOT [5] image coding algorithm is adopted by the
JPEG2000 standard, and similar algorithms are widely adopted by
the state-of-art wavelet video codecs [9,11]. The basic coding flow
of an interframe wavelet video coder is as follows. After temporal
and spatial analysis, each subband is partitioned into a number
of code blocks, and the bitplanes of each block are processed by
a few coding paths. The boundary between two consecutive coding
paths is a truncation point. These truncation points are character-
ized by the slopes of the rate-distortion curves at the truncation
point. These slope values are recorded and sent to the bitstream
extractor. In one extraction unit, such as one GOP, the coding paths
with similar slopes are grouped into the same coding layer. A per-
missible positive slope value is called a rate-distortion threshold.
The coding layers with the absolute values of their slopes higher
than the rate-distortion threshold are chosen to form an output
bitstream. The sum of the bitrates of these chosen coding layers
is calculated. If the calculated bitrate is less than the target bitrate,
the rate-distortion threshold is adjusted to a smaller value so that
more coding layers will be included and the total bitrate increases.
On the other hand, the threshold value increases so as to discard
some coding layers. By repeating the above operation, the bitrate
of the truncated bitstream reaches the target value. Because each
bitplane of a code block is split into three coding paths, the bitrate
extraction can be quite accurate. Therefore, the bitrate of the tex-
ture bitstream can be precisely controlled by the bitstream trunca-
tion mechanism. But the non-scalable motion information imposes
a constraint on bitstream scalability. The motion information is
typically temporal scalable and can be adapted to different decod-
ing frame rates. However, when the spatial scalability feature is
turned on, the motion information is often not adjustable to differ-
ent decoding picture size during the extraction. In the following
sub-section, we will compare the rate-distortion optimization
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hed line show the data paths of the texture and motion information, respectively.



C.-Y. Tsai, H.-M. Hang / J. Vis. Commun. Image R. 21 (2010) 917–929 919
methods for the non-scalable and the scalable video cases, and
then develop the methods in the next section to adjust the motion
information bitrate.

2.2. Rate-distortion mechanism in video coding

According to the Shannon’s source coding theory [18], the rate-
distortion function can be derived from the probability model of a
coding source. Based on the rate-distortion function and with the
help of optimization methods, an optimal rate-distortion trade-
off can be theoretically obtained for a given bitrate or distortion
condition.

In a typical hybrid video coding scheme, the coding source is the
transformed residual signal after inter or intra predictions. It is
well-known that the probability distribution of the transformed
coefficients can be closely approximated by the Laplacian distribu-
tion [21]

PðxÞ ¼ K
2

expf�Kjxjg; ð1Þ

where K is the Laplacian parameter and can be estimated from the
signal standard deviation r by K ¼

ffiffi
2
p

r . If the probability distribution
of the transformed residual signal is a Laplacian source, its rate-dis-
tortion function with quantization distortion D and texture coding
rate R was derived in [18]. In addition to the texture coding bitrate,
the extra side information needed in a hybrid coder is mostly the
motion information rate DR. According to the optimization theory,
the best motion prediction mode can be obtained by minimizing
the Lagrangian cost function defined by

JMode ¼ Dþ kModeðRþ DRÞ; ð2Þ

where kMode is the Lagrange parameter. For a fixed DR, kMode can be
theoretically derived for a well-defined rate-distortion function in
(2). Both the theory and the real data show that the kMode value is
strongly related to the quantization step size, which controls the
amount of distortion directly [22,23]. Different kMode values are used
by several popular reference encoders. These kMode values are picked
or derived based on their system characteristics and the experimen-
tal data [24]. The rate-constrained motion estimation is performed
separately by using another Lagrangian cost function given by

JMotion ¼ FDþ kMotionDR; ð3Þ

where FD is a function of the frame difference between the original
and the reconstructed image blocks. In many practical systems, FD
is either SSD (sum of squared differences) or SAD (sum of absolute
differences). In the MPEG reference encoder, kMotion is empirically
chosen to be kMotion and

ffiffiffiffiffiffiffiffiffiffiffi
kMode
p

for SSD and SAD, respectively [22].
From (2) and (3), kMode is, clearly, an important factor that bal-

ances the weights of rate and distortion in the overall cost (J)
and it thus affects the bitrates allocated to the texture and the mo-
tion information. As discussed earlier, kMode depends on the source
characteristics, the quantization step size and the bitrate. Several
papers [19,20] show that the statistics of the texture are helpful
in selecting the proper kMode value. The key for solving the mode
decision and bit allocation problem is to find the relationship
between quantization step size, texture characteristics and bitrate.

Using only one fully self-embedded bitstream to satisfy differ-
ent coding requirements simultaneously is the most attractive
feature of the scalable video coding technique. In the scalable
interframe wavelet coding, the bitstream generation process and
bitstream extraction process are two separate, independent steps.
The encoding process generates lossless compressed bitstream.
After the encoding, the extractor truncates the lossless bitstream
according to the bitrate requirement. In other words, the extrac-
tor plays the role of quantizer. This coding structure uses the in-
put source frames, not the reconstructed frames, to predict the
current frame. It is often referred as ‘‘open-loop structure” in
the 3D wavelet coding literature [12]. It is very difficult to
precisely control the prediction accuracy during the encoding
process. Moreover, multiple bitstreams are to be extracted from
the same coded bitstream. It is hard to adequately allocate the
motion information bitrates at encoder (before the extractor) to
satisfy all target operation points simultaneously. A theoretical
treatment on the optimum trade-off between the motion infor-
mation bitrate and the texture signal bitrate for a motion-
compensated video codec was earlier explored by Girod [15]
and will be discussed in the next section. In practice, most exist-
ing scalable wavelet video coding schemes still adopt the cost
functions used in the hybrid video coding ((2) and (3)), but the
Lagrange parameter in each temporal decomposition stage is
manually selected empirically [25]. Because the target bitrate is
given after the entire bitstream is coded, the pre-selected, fixed-
value Lagrange parameter must be working for a range of bitrates.
In other words, we hope it can provide a reasonable overall per-
formance for all the bitrates of interest. The cost function defined
by (2) determines the best motion prediction mode. If a total bi-
trate is given, we can follow the conventional approach to pick up
the Lagrange parameter. But unfortunately, the bitrate is not
known at the encoding stage for scalable wavelet video encoding.

To go one step further, we look into the role that the motion
vectors play in scalable interframe wavelet coding. The MCTF unit
performs the temporal decomposition operation along the motion
trajectory; therefore, the accuracy of motion vectors is critical to
their motion compensation performance. The low-pass frames pro-
duced by temporal filtering will be further decomposed at the next
temporal level. Thus, the temporal decomposition layers form a
hierarchical structure. The inefficiency in motion prediction prop-
agates along the temporal hierarchy in the same GOP. Therefore,
accurate motion vectors tend to decrease the overall distortion.
But, a very accurate motion vector often requires more coding bits.

To sum up, the Lagrangian cost function is a very powerful tool
in the conventional non-scalable coder. But due to the open-loop
coding structure and the requirement of multiple operating points,
the use of the Lagrangian cost function in scalable wavelet video
coding becomes inadequate. The key problem is finding the proper
trade-off between the motion information and the residual texture
information for scalable wavelet video coder. The whole scenario
becomes even more complicated when we consider the propaga-
tion of MCTF inefficiency along temporal hierarchy. Therefore, we
propose another approach to replace the ordinary Lagrangian cost
function for scalable wavelet video coding.
3. Motion information gain (MIG) metric

A typical extraction process in scalable wavelet coding trun-
cates only the encoded texture bitstream and maintains the integ-
rity of the entire encoded motion information. For a given bitrate
condition, different amounts of motion information lead to differ-
ent types of residual texture signals, and thus lead to different rate-
distortion behavior. Although there are other approximate solu-
tions [26,27] that select the scalable motion information to match
certain very low-bitrate requirements, we focus on the pre-parti-
tioned motion information solution in the following study. That
is, the optimal amount of information bits is decided at the encod-
ing stage.

We first analyze the rate-distortion behavior of the motion-pre-
dicted residual signals. Then, based on this rate-distortion relation-
ship, we derive a quantitative metric that measures the coding
efficiency of motion information. Also, a theoretical explanation
from the entropy viewpoint is given to our coding efficiency
metric.
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3.1. Rate-distortion model of motion-compensated prediction

For a scalable wavelet video coder, theoretically, we can fix an
extraction bitrate and then find the rate-distortion behavior due
to the increase/decrease of motion information. In other words,
at a given bitrate, if a certain amount of the texture bitrate is
shifted to the motion information, will the reconstructed image
distortion be reduced or increased? A solution to this problem is
searching for the optimal motion information that leads to the
optimal R-D performance at different bitrates. For example, is the
block size or the motion vector accuracy more important in
improving the coded image quality? Clearly, the answer depends
on both picture content and bitrate.

Although the residual frames after MCTF will be further spa-
tially decomposed by 2-D DWT, in this study we focus on the
rate-distortion behavior of the texture information at the MCTF
stage (not after 2-D DWT) because the motion information coding
efficiency is our main concern. Because the consecutive frames are
often very similar, the motion-predicted residual signals typically
have zero-mean and nearly symmetrical distribution. The residual
signals after motion prediction can be modeled as Laplacian
sources. Because the temporal high-pass frame is essentially a
weighted combination of the motion-predicted residual frames,
we next try to construct the rate-distortion model of the motion-
compensated residual signals.

When the residual texture signal is produced by the motion
prediction operation, the rate-distortion behavior of this texture
information portion is decided. That is, since the residuals are fixed
after motion compensation, their rate and distortion trade-off due
to quantization and entropy coding is also fixed. However, if we
change the motion vectors (mv) used in motion prediction, the
residual signals are different and thus, the texture rate-distortion
function changes. We like to know the texture rate-distortion func-
tion variation before and after the motion prediction being applied
to the same coding block.

For a motion-compensated video codec, Girod [15] pointed out
that at a given total bitrate, the optimum trade-off point should lo-
cate at

@D
@Rtexture

¼ @D
@Rmv

; ð4Þ

where the left-hand side is the distortion decrease due to texture
rate increase and the right-hand is the distortion decrease due to
motion information rate increase. Fig. 2 gives an illustration of this
TRTR R− Δ R

D

0 ( )TD R

( )TD R R− Δv

0 ( )D R

( )D Rv

Fig. 2. Illustration of rate-distortion curves of texture residual signal before and
after motion prediction.
principle. We use the zero motion vector (no motion-compensa-
tion) case as a reference. In Fig. 2, D0 (R) is the rate-distortion func-
tion of the residual signal produced by using the zero motion vector,
and Dv (R) is the rate-distortion function of the residual signals pro-
duced with the motion vector set v. From the bitrate viewpoint, an
extra coding bitrate DR is needed for sending the motion vectors v.
Since the total target bitrate RT is given, the bitrate available for the
texture information is reduced to RT � DR. If this set of mv is bene-
ficial for the overall performance, the quantization error (distortion)
of the texture information with mv should be less than that without
mv at the same target bitrate. Otherwise, the motion compensation
is judged inefficient. Therefore, the distortion with motion predic-
tion is smaller than that without motion prediction:

DvðRT � DRÞ < D0ðRTÞ: ð5Þ

Conceptually, (5) is equivalent to (4) in [15]. But different from the
motion region partition approach in [15], we try to find an instru-
mental trade-off measure and a design procedure for adjusting
the mv bitrate.

For the Laplacian source described by (1), if the absolute-error
distortion measurement is in use, (5) can be rewritten using the
rate-distortion functions given in [18] as

1
Kv
� 2�ðRT�DRÞ <

1
K0
� 2�ðRT Þ: ð6Þ

The Laplacian parameter Kv and K0 can be estimated from the
residual signal variances, r2

v and r2
0, respectively. That is,

K ¼
ffiffiffi
2
p

=r. Thus, (6) becomes

log2ðr0Þ � log2ðrvÞ
DR

> :1 ð7Þ

Let us define the function U to be the logarithm value of the signal
standard deviation, and let DU be

DU � U0 �Uv ¼ log2ðr0Þ � log2ðrvÞ: ð8Þ

Then, (7) can be rewritten as

DU
DR

> 1: ð9Þ

From (5)–(9), we can see that the target bitrate term RT is can-
celled because it appears on both sides in (6). This target bitrate
elimination gives us a big advantage in the rest of our rate-distor-
tion analysis. Different from the conventional video coding, the tar-
get (extraction) bitrate is unknown during the scalable encoding
process. In this formulation, the measurement of motion prediction
efficiency is extraction bitrate irrelevant. This is true under the
assumption that the residual signal probability distribution is
Laplacian for both with and without motion-compensated predic-
tion. This Laplacian model is not all accurate in real cases. Here, DU
and DR represent the variation of texture statistics and the bitrate
cost of adopting motion estimation, respectively. We thus view
DU/DR as a gain factor in measuring the motion prediction effi-
ciency. Intuitively, the motion prediction operation is preferred if
it reduces the texture variance significantly. Furthermore, (9) gives
a quantitative metric and specifies a threshold of acceptable DU/
DR. This threshold is derived based on the Laplacian source
assumption with absolute-error distortion definition.

3.2. Motion information gain (MIG)

According to the last sub-section, DU represents the variation
of texture statistics due to motion-compensated prediction. We
are going to show next that DU represents the difference between
two differential entropies. For the Laplacian source X, its differen-
tial entropy h(X) is given below [18].
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hðXÞ ¼ �
Z

X
PðXÞlog2ðPðXÞÞdx

¼ �
Z 1

�1

K
2

e�Kjxj � log2
K
2

e�Kjxj
� �

dx ¼ 1þ log2
e
K

� �
; ð10Þ

where K is the Laplacian parameter. Thus, the differential entropies
of the residual signals X0 and Xv produced by the zero motion vector
and the motion vector set v are, respectively,

hðX0Þ ¼ 1þ log2
e

K0

� �
;

hðXvÞ ¼ 1þ log2
e

Kv

� �
:

ð11Þ

Although the differential entropy does not represent the actual bi-
trate, the difference between two differential entropies represents
the bitrate difference estimation of these two sources. Since the
Laplacian parameter can be estimated from the signal variance,
we thus obtain the following equation:

hðX0Þ � hðXvÞ ¼ log2
Kv

K0

� �
¼ log2

r0

rv

� �
: ð12Þ

Comparing (12) with (8), as a consequence of rate-distortion theory
on the Laplacian source, we find that these two equations are the
same. Therefore, DU represents the reduction of residual signal en-
tropy in encoding the residual signals before and after motion-com-
pensated prediction. Thus, the interpretation of DU/DR is as
follows.

DU
DR
� decrease in residual signal entropy

increase in motion information bitrate
: ð13Þ

From (13), we can see that DU/DR is the ratio of the ‘‘reward” and
the ‘‘cost” due to the use of motion-compensated prediction. The
‘‘cost” is the extra bitrate for encoding the motion vectors, and
the ‘‘reward” is the entropy reduction of the residual texture sig-
nals. Therefore, DU/DR is called the ‘‘motion information gain”,
abbreviated as MIG. It is thus used to measure the motion predic-
tion efficiency. We denote this MIG function due to the motion vec-
tor set v by

/ðvÞ,DU
DR

: ð14Þ

This gain factor implicitly represents the trade-off between the
residual signal bitrate and motion information bitrate. The funda-
mental concept behind (14) is similar to that (4) in [15] as discussed
earlier. But through our preceding lengthy derivation, we show that
the total target bitrate disappears in the final MIG expression. Thus,
the MIG metric fits well for applying to the scalable wavelet video
coding structure.

Let us extend the original criterion (9) to a more general form.
When we consider the advantage of using motion prediction in
scalable wavelet video coding, the MIG metric of the candidate mo-
tion vector set v should satisfy

/ðvÞ > C; ð15Þ

where C is a chosen threshold value. In the original derivation, C is
1. Here we investigate the range of C values in real video coding
cases. Because a practical entropy coder cannot approach the entro-
py bound, both the compressed texture and the compressed motion
information would need more bits to code. Therefore, the motion
prediction is not as effective as (5) shows. The distortion reduction
by the motion bitrate DR, measured in bits/pixel, is less than the ex-
pected value; that is, Dv should be larger in real cases. Therefore, (5)
is modified to

a � DvðRT � DRÞ < D0ðRTÞ; ð16Þ
where a > 1. Using the above equation, we can follow the same der-
ivation process in Section 3.1 to obtain the MIG lower bound. Con-
sequently, an inequality similar (7) is derived:

log2ðr0Þ � log2ðrvÞ
DR

> 1þ log2ðaÞ
DR

: ð17Þ

Because a > 1, the right term of the above equation, the lower bound
of C, is larger than 1. When DR is small or log2(a) is large, C becomes
much larger than 1.

4. Mig cost function and mode decision procedure

As we discuss in the previous sections, the Lagrangian multi-
plier approach works well for the single bitrate optimization but
is not suitable for the multiple-rate scalable coding optimization.
Because the MIG metric is independent of the target (extraction)
bitrate and it is proportional to the cost and reward ratio when
the motion-compensated prediction is activated, it can serve as
an indicator for deciding the motion estimation mode and param-
eters. We are thus inspired to propose a new cost function and an
associated mode decision procedure based on MIG for scalable
wavelet video coding.

4.1. Properties of MIG

Since our motion mode and vector selection process is applied
only to image blocks with non-zero optimal motion vectors, the
denominator of (14) is non-zero. There are a few interesting prop-
erties associated with /(v).

(1) /(v) P 0. Clearly, we will not use an mv that produces a neg-
ative DU value. For a given image block, if the zero mv is the
best mv in the sense that any non-zero mv cannot reduce the
residual signal variance, then the /(v) value associated with
this block is assigned to be 0 and the best coding mode is the
one with the zero motion vector.

(2) /(v) is bounded. In digital image coding, the residual signal
has a finite variance. The best non-zero mv can, at the best,
reduce the residual variance to zero. The variance difference
before and after employing mv is thus finite. In other words,
the /(v) value saturates and cannot be further improved
when a proper mv is identified.

(3) In the following sections, we deal mainly with the case that
/max P /(v) > C. That is, the useful mv, v, should produce a /
(v) value greater than 0 and less than or equal to /max. Ide-
ally, the parameter C is 1 and is independent of image con-
tents and target bitrate if the Laplacian rate-distortion
model holds. However, as discussed earlier, practically C is
not 1 and is bitrate dependent.

4.2. The proposed mig cost function

Intuitively, the MIG metric /(v) with the constraint, /max P /
(v) > C, can be the cost function used for searching for the optimal
mv. However, the C value is unknown and to be identified in real
image coding. Thus, for the convenience in computation, we use
the following equivalent form. We expand (15) with the aid of
(8) and (14). The inequality becomes

r2
0 > r2

v � 2
2�C�DR: ð18Þ

A large MIG value implies a large DU and/or a small DR. In (8), a
large DU value implies that the difference between r0 and rv is
large. Thus, the right term in (18), r2

0 > r2
v � 2

2�C�DR, should be as
small as possible. Therefore, we propose a so-called ‘‘MIG cost
function” to measure the prediction cost. For a coding source s,
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the motion vector set v produces the residual signals with variance
r2

s ðvÞ and its average information bitrate (for representing v) is
DR(v). The MIG cost function J is defined as

Jðs;vjCÞ ¼ r2
s ðvÞ � 2

2�C�DRðvÞ; ð19Þ

where C is generally source and bitrate dependent. We include it
explicitly in the argument of the J function to emphasize its role
in our rate control algorithm. The problem now becomes looking
for v that minimizes J.

We need to identify the value of C in (19). According to our pre-
vious discussions, the C value is decided by the coding system and
the source signal s in (14). In practice, the source signal s is the
temporal high-pass frames generated by MCTF. Indeed, the proba-
bility distributions of the different temporal layers have different
shapes [28]. We conduct the following experiments to characterize
J and also to identify the value of C.

We start with a fixed C value and simply use (19) as the cost
function in performing motion estimation and mode decision in
encoding. The detailed procedure of mode decision will be de-
scribed in the next sub-section. After the encoding process is done,
the encoded bitstream is truncated to a fixed bitrate, for example,
256 Kbps, and then we decode the truncated bitstream. The mean-
squared error (MSE) between the decoded and the original images
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Fig. 3. MSE vs. C value in the MIG cost function at (a) 256 Kbps, (b) 284 Kbps, and (c)
resolution).
is calculated; thus, one test point of a MSE and C pair is obtained.
The data are collected from 32 frames of the Mobile sequence at
CIF resolution.

Repeating the above steps with different C values, we obtain a
MSE vs. C curve at 256 Kbps as shown in Fig. 3(a). By changing
the truncation bitrates settings, the MSE vs. C curves at 384 and
800 Kbps are obtained as shown in Fig. 3(c) and (d), respectively.
Each of Fig. 3(a)–(c) shows that the MSE is minimal when C reaches
a certain value. This is equivalent to the performance saturation
phenomenon we discuss earlier. When C is large, only the very
effective mv’s can make positive contribution and their value is
diminishing as C gets larger; and thus the MSE goes up again as
shown in Fig. 3(a)–(c). Although the theory predicts that MIG is
independent of bitrate, in reality, however, the coding system effi-
ciency and the source probability distribution are bitrate and tem-
poral-level dependent. Indeed, the best C value that leads to the
minimum MSE tends to be smaller at higher bitrates. This is consis-
tent with the known observation that the mathematical model
matches the real rate-distortion relationship at higher rates. For
example, the rate-distortion relationship of a quantizer approxi-
mates the asymptotical R-D function at high bitrates [18]. If the
optimum C value does not change significantly, we prefer to use
a constant C to cover the bitrates of our interests. We pick up 7
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target bitrates, 256, 384, 512, 800, 1024, 1200, and 1500 k, and
their average behavior (MSE vs. C) is shown in Fig. 3(d). In conclu-
sion, the C value generally falls in the range of [4,10].

4.3. Temporal-level factor in MIG cost function

After motion-compensated prediction, the relationship between
the pixels on the predicted and the reference frames can be classi-
fied to three types: connected, unconnected, and multi-connected [8].
During the MCTF process, because the temporal correlation be-
tween the low-pass frames at the deep temporal level is relatively
small, the unconnected pixel percentage increases, which implies
that the prediction effectiveness decreases. Furthermore, the con-
nection relationship leads to the distortion propagation along the
tree structure generated by the temporal filtering process after
quantization, which is the so-called ‘‘quantization noise propaga-
tion” problem in MCTF [13,29]. Here we follow the notations de-
fined by [13] in modeling the noise propagation process. The
average distortions of the low-pass frame and the high-pass frame
at temporal level t are denoted as �dðtÞL and �dðtÞH , respectively. When
the Harr wavelet filter is adopted in MCTF, Wang and van der
Schaar [13] show that �dðtÞL and �dðtÞH are related to �dðt�1Þ

L by the follow-
ing equation,

�dðt�1Þ
L ¼ 1

2
�dðtÞL þ

3
4
� rc

4

� �
� �dðtÞH ; ð20Þ

where rc is the ratio of the connected pixels. It is obvious that rc

determines the severity of the distortion propagation problem.
There are two major factors affecting the rc value: the picture char-
acteristics and the motion estimation method. By minimizing the
MIG cost function with the pre-chosen C(t) parameter (the C value
at the t temporal level), the best motion vector set v(t) can be ob-
Fig. 4. MSE vs. w value with different C0 parameter settings in the MIG cost functi
tained, and thus rc is decided. The frames are temporally decom-
posed along the v(t) trajectory. Hence, �dðtÞL and �dðtÞH are the
functions of v(t). We rewrite (20) as

�dðt�1Þ
L ¼ 1

2
�dðtÞL ðvðtÞjC

ðtÞÞ þ 3
4
� rcðvðtÞjCðtÞÞ

4

 !
� �dðtÞH ðvðtÞjC

ðtÞÞ; ð21Þ

in which the notation (.|C(t)) is inserted to emphasize the result de-
pends on the C(t) value. Thus, in the Haar wavelet filter case, (21)
shows that the rate-distortion behavior of the low-pass frame at
temporal level t�1 is affected by the motion vectors at temporal le-
vel t.

Theoretically, to find the optimal solution of mv, the effects of
the quantized/truncated residual signals at all the previous tempo-
ral levels have to be considered. Practically, because of the open-
loop structure and the complexity of the inter-scale coding system,
it is very difficult to construct an analytical model, or even an
experimental model, to describe the relationship between the dis-
tortion propagation and the motion information. A feasible ap-
proach is to adjust the C value of (19) along with the increased
temporal level. Also, this adjustment changes the values of
r2

s ðvÞand DR(v) according to their located MCTF decomposition
layer and thus it can effectively compensate for the propagation
distortion loss. Therefore, the MIG cost function of (19) is modified
to

Jðs;vjCðtÞÞ ¼ r2
s ðvÞ � 2

2�CðtÞ�DRðvÞ; ð22Þ

where the superscript t is the temporal level index in MCTF. It is
shown that the statistical relationship between consecutive sub-
band signals can be modeled by a hidden Markov model [30]. Sim-
ilarly, a Markov-like relationship seems to exist between
consecutive temporal decomposition layers. Thus, the optimally
decided distortion values of these layers are correlated. Therefore,
on: (a) Mobile, (b) Tempete, (c) Container, and (d) Akiyo, all in CIF resolution.
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we conjecture that a simple linear predictor can describe the rela-
tionship of the C parameters among temporal layers. That is, for
two consecutive temporal levels,

CðtÞ ¼ w � Cðt�1Þ: ð23Þ

Consequently, if C0 is given for the first temporal level, (23)
becomes

CðtÞ ¼ wðtÞ � C0: ð24Þ
Select MIG cost function 
parameters, C 0 and w
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Fig. 6. Flow chart of the proposed mode decision procedure using the MIG cost
function.
In practice, the weighting factor w can be found by extensive
experiments. We start with a pair of C0 and w values and use
(22) to perform motion search and mode decision. Repeating the
same experimental steps for Fig. 3(d) with different w values, we
obtain the MSE vs. w curves using different C0 values. The experi-
mental results are shown in Fig. 4. Because the motion information
percentage in fast-motion pictures is larger than that in the slow-
motion pictures, the error propagation problem is severe. Hence,
the benefit of using our temporal weighting adjustment is more
significant in the fast-motion cases. Fig. 4(a) and (d) shows the re-
sults of Mobile and Akiyo test sequences, respectively. Compared
with Akiyo, Mobile is a relatively fast-motion test sequence, and
thus the distortion in Fig. 4(a) is more sensitive to the w value than
that in Fig. 4(d). In contrast, the temporal weight adjustment
makes little difference in MSE for the Akiyo test sequence. Fig. 4
shows that the average MSE is a convex function in w and the min-
imal MSE appears at around [0.6, 0.9]. According to the collected
data, w = 0.8 seems to be a good value for most cases. To verify
the effectiveness of our chosen temporal weighting factor, we
tested Mobile and Foreman videos and adopted the MIG cost func-
tion with weightings, w = 0.8 and w = 1. In these simulations, the C0

parameter is set to 7. Fig. 5 shows that applying the temporal
weighing factor can improve the overall MSE at different bitrates.

4.4. Block-based mode decision procedure

The MIG cost function can be used to decide the coding mode. It
tells us the trade-off between the motion information and the tex-
ture information. Based on MIG, we develop a mode decision pro-
cedure. In a conventional non-scalable video coder, the best
motion vector and coding mode are decided by minimizing the
Lagrangian cost function ((2) and (3)) for a given single bitrate.
As discussed in the previous sub-sections, with the MIG cost func-
tion we are able to choose the most appropriate coding mode
(including mv) by minimizing its value. The basic steps in the
Table 1
The optimized default encoder parameters settings [32] for different MCTF temporal
level t in the VidWav reference software [25].

Temporal level Motion search
range (pixel)

Motion vector
accuracy (pixel)

Lagrange
parameter

CIF 4CIF CIF 4CIF

t = 0 32 1/4 1/4 16 16
t = 1 64 1/2 1/2 32 50
t = 2 128 1/2 1 64 150
t = 3 128 1/2 1 64 150
t = 4 128 1/2 1 64 150
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proposed mode decision procedure are similar to that in the con-
ventional scheme. In the existing scalable wavelet video coding
schemes, the mv search is block-based and the variable block-size
Foreman

(a)

Tempete

(c)                             

Waterfall

(

Fig. 7. Rate-distortion performance comparison between the Lagrangian method (dash
truncation bitrate (Kbps), and the y-axis is the decoded video PSNR (dB). The tested video
(CIF resolution).

Table 2
PSNR comparison between the Lagrangian and the proposed methods in the combined te

Sequence (4CIF) GOP size Cost Function 750 Kbps 15 fps 1024 Kbps 15 fps

City 32 Lagrangian 36.39 37.33
Proposed 36.73 37.69

Crew 32 Lagrangian 36.39 37.30
Proposed 36.46 37.39

Harbour 32 Lagrangian 33.91 34.97
Proposed 33.94 35.01

Soccer 32 Lagrangian 36.28 37.22
Proposed 36.51 37.50

Ice 16 Lagrangian 40.51 41.65
Proposed 40.89 42.05
motion compensation technique is used to find the best macro-
block coding mode. Each macroblock coding mode represents a
partition of macroblock into a certain combination of sub-blocks.
Mobile

            (b) 

Container

                           (d) 

e) 

ed line) and the proposed MIG cost function method (solid line). The x-axis is the
sequences are (a) Foreman, (b) Mobile, (c) Tempete, (d) Container, and (e) Waterfall

mporal and SNR scalabilities tests.

1200 Kbps 30 fps 1500 Kbps 30fps 2048 Kbps 60fps 3000 Kbps 60fps

37.42 37.98 38.49 39.33
37.80 38.40 38.85 39.62

36.74 37.34 37.18 38.20
36.92 37.52 37.33 38.28

34.96 35.59 36.25 37.50
34.98 35.65 36.29 37.52

36.92 37.61 38.00 39.20
37.19 37.95 38.23 39.43

41.25 42.00 42.41 43.62
41.76 42.51 42.87 44.08



Table 3
The average prediction error (squared error) and motion information bits by ‘‘MB”
mode prediction at first temporal level. All sequences are CIF resolution video with
30 fps.

Test sequence Cost function Prediction
error/pixel

Motion info.
bits/macroblock

Container Lagrangian 8.36 8.8
Proposed 3.39 12.4

Foreman Lagrangian 13.87 13.87
Proposed 11.07 15.79

Akiyo Lagrangian 5.1 9.0
Proposed 3.5 11.4

Mobile Lagrangian 57.11 16.3
Proposed 42.23 15.1
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Fig. 6 illustrates the proposed mode decision procedure, which
consists of three steps as described below.

4.4.1. Step 1: select the appropriate MIG cost function parameters
The proposed MIG cost function contains one parameter, C(t) in

(22), and it can be further separated into two parameters, C0 and w
in (24). According to our previous discussions, C0 and w can be
empirically chosen from the intervals, [4,10] and [0.6, 0.9], respec-
tively for the CIF resolution videos.

4.4.2. Step 2: search for the best motion vector set for each block mode
There are many possible sub-block combinations for motion

compensation in one macroblock. For example, a typical 16 � 16
size macroblock has 16 � 16, 16 � 8, 8 � 16, and 8 � 8 block
modes; and each 8 � 8 block can be further partitioned to 8 � 4,
4 � 8, and 4 � 4 sub-blocks. Assuming that a macroblock can be
partitioned to Nm sub-blocks for mode m, the mv’s (vi) associated
with all sub-blocks (bi) form two Nm-tuple vectors, vm and bm,
respectively, where

vm ¼ ðv1; . . . ;vNm Þ;
bm ¼ ðb1; . . . ; bNm Þ:

ð25Þ
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solid line and dash line represent the proposed and Lagrangian approaches, respectively
For each sub-block, to find the best mv, all the mv candidates
within the search range S are examined. These candidate motion
vectors can have forward, backward or bi-directional prediction
directions. By minimizing the MIG cost function in (22), the best
motion vector v�i for sub-block bi is obtained. Mathematically, it
is identified by performing the following optimization procedure.

v�i ¼ arg min
v2S
fJMotionðbi;v jCðtÞÞg

with JMotionðbi;v jCðtÞÞ ¼ r2
bi
ðvÞ � 22�CðtÞ�DRðvÞ:

ð26Þ

Then, the best mv for the macroblock is the collection of all the best
motion vectors for mode m; i.e.,

v�m ¼ ðv�1; . . . ;v�Nm
Þ: ð27Þ

The residual signal is modeled as a Laplacian source with zero-
mean. After all the sub-blocks finish the motion estimation process
for mode m, the residual variance r2

bm
ðv�mÞ and the average motion

information bitrate DRðv�mÞ of a macroblock can be, respectively, ex-
pressed as

r2
bm
ðv�mÞ ¼

1
Nm

XNm

i

r2
biðv�i Þ;

DRðv�mÞ ¼
1

Nm

XNm

i

DRðv�i Þ þ rm;

ð28Þ

where rm is the average extra bits needed to record the coding mode
information. Both DR and rm are in bits/pixel.

4.4.3. Step 3: choose the best block mode with the minimum MIG cost
Assuming that the block mode m in Step 2 belongs to the mode

set M, which contains all possible block modes, the MIG cost func-
tion in (22) is used again to choose the best macroblock mode.
Hence, the best block mode is decided by minimizing the MIG cost
function:

m� ¼ arg min
m2M
fJModeðbm;v�mjC

ðtÞÞg

with JModeðbm;v�mjC
ðtÞÞ ¼ r2

bm
ðv�mÞ � 2

2�CðtÞ�DRðv�mÞ
ð29Þ
40 50 60 70

e no.
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l level for Container and sequence (CIF resolution with 30 fps and 128 frames). The
.
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Therefore, the best block mode and its associated motion vectors of
a macroblock are obtained.

5. Experimental results and discussions

To evaluate the coding performance of the proposed mode deci-
sion procedure, our algorithm is implemented on the VidWav ref-
erence software. The VidWav software was developed by Microsoft
[31] aiming at the MPEG scalable video coding competition in
2004. The default parameter values included in the software were
well tuned by the proponents in order to produce good picture
quality in competition. It adopted the interframe wavelet video
coding structure and a later version was described in [25]. We
examine our proposed scheme for two scenarios: (1) the SNR sca-
lability requirement for the CIF (352 � 288, 30 fps) test sequences,
and (2) the combined temporal and SNR scalability requirement for
the 4CIF (704 � 576, 60 fps) test sequences. To fulfill the scalability
requirements, each test sequence is encoded into only one bit-
stream, and the bitstream is truncated to different bit sizes accord-
ing to the test conditions. For both scenarios, the PSNR results of
two mode decision methods, the conventional Lagrangian and
our proposed MIG cost function, are compared. The temporal
wavelet filter is the Daubechies 5/3 filter [6].

Here are the details of the encoder parameters in our experi-
ments. First, to obtain a creditable control experimental result,
we use the optimized default Lagrange parameters, which were de-
signed by Microsoft in the aforementioned VidWav contest [32].
Fig. 9. (a) The original image, (b) coded picture using the Lagrangian method, and (c) cod
from the 41st frame of the Mobile sequence (CIF, 30 fps). The extraction bitrate is 256 K
Table 1 lists the Lagrangian mode decision method parameters.
Second, we employ the fast-motion search algorithms included in
the VidWav software for both the conventional Lagrangian-based
method and our proposed MIG-based method. Third, the motion
search range and motion vector accuracy settings, described in Ta-
ble 1, are the same for both the conventional and our proposed
methods. Finally, to choose a proper GOP size, we first find the best
GOP size, usually 16 or 32 frames, for each sequence using the con-
ventional Lagrangian method, and then we use the same GOP size
for our proposed scheme.

In the first scenario, our objective is to compare the coding per-
formance at different bitrate conditions for the SNR scalability. To
evaluate the performance, we test 5 video sequences at the CIF res-
olution and 30 fps: Foreman, Mobile, Tempete, Container, and
Waterfall. In this scenario, the C0 and w in (24) is set to 7 and 0.8
empirically as discussed in Section 4. Fig. 7 shows the rate-distor-
tion curve comparison between these two coding schemes for the 5
test sequences. Compared to the Lagrangian mode decision, the
proposed method shows a PSNR improvement from 0.1 to 0.9 dB
depending on sequences. It indicates that our proposed mode deci-
sion method generally result in better coding performance in this
SNR scalability scenario.

Because the high resolution video transmission becomes more
and more popular recently, in the second scenario we test the com-
bined temporal and SNR scalabilities at higher picture resolutions.
The video sequences, City, Crew, Harbour, Soccer and Ice, have 4CIF
picture size and 60 fps. The coding structure has a three-level
ed picture using the proposed method. All three pictures are captured and magnified
bps. The PSNR of (b) and (c) are 30.17 and 30.53 dB, respectively.
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temporal decomposition and coding rates from mid bitrate to high
bitrates. Table 2 shows the PSNR results of the Lagrangian and the
proposed methods. The proposed mode decision method has better
performance (0.1–0.5 dB PSNR) in all 30 scalability test points.

We are going to take a close look, at the macroblock (MB) level,
at the differences between the Lagrangian method and our meth-
od. Our method tends to select the prediction modes that produce
large MIG values; that is, a high ratio of the residual signal reduc-
tion to the motion information bitrate. We collect various MB sta-
tistics including MB mode, prediction errors, and etc. Three types
of motion compensation block sizes are in use: 16 � 16, 16 � 8,
and 8 � 16. Table 3 shows the average prediction error and the mo-
tion information bits at the first temporal level, collected over the
entire video sequence. In the case of Foreman test sequence, when
compared with the conventional Lagrangian method, our proposed
method needs additional 1.92 bits (15.79–13.87) per macroblock,
which is about 11 Kbps in total. But the prediction error is reduced
by an amount of 2.8 (13.87–11.07) per pixel, or about 0.98 dB PSNR
gain in total. This average prediction error reduction is calculated
using all macroblocks with MB prediction. In the Mobile case, the
proposed method can, in fact, reduce both the prediction errors
and the motion information bits at the same time. Table 3 shows
1.2 bits per macroblock reduction and 14.88 per pixel prediction
error reduction, or about 1.31 dB PSNR gain. Generally, this trend
is found at all temporal levels.

In addition, we examine the MIG values of the coded sequences.
As discussed earlier that /(v) in (14) represents the ratio between
the residual texture entropy reduction and the motion bitrate in-
crease. Hence, in general, a higher /(v) is preferred. Here, H(X) de-
notes the entropy of the motion-compensated residual signal, X.
That is,

HðXÞ ¼ �
X
x2X

pðxÞ � log2ðpðxÞÞ; ð30Þ

where p(x) is the probability of x value. In addition, v* and vp are the
searched motion vector set and initial search point for a macro-
block, respectively, and thus DR(vp) is zero. The MIG value esti-
mated from data is denoted as /est, which is defined below.

/estðv�Þ ¼
HðXv� Þ � HðXvp Þ

DRðv�Þ : ð31Þ

Fig. 8 shows the /est per frame results for both the conventional
Lagrangian method and the proposed mode decision method at
the first temporal level. It can be seem that the proposed MIG ap-
proach generally produces higher /est values than the conventional
Lagrangian approach. However, a few residual frames may not be
modeled well by the Laplacian distribution, and this inaccurate
modeling may lead to a poor MB mode selection. Therefore, not
all the frames coded using our method have the highest MIG values.
From the above experiments and discussions, the proposed mode
decision method shows its benefits in the scalable wavelet video
coding. Particularly, our scheme has better coding performance on
the combined temporal and SNR scalabilities.

Fig. 9 shows the visual quality comparison. The PSNR difference
between Fig. 9(b) and (c) is about 0.36 dB. However, one can easily
see that the proposed method has a better subjective quality on, for
example, the numbers on the calendar (high contrast edges) and
the rotating red ball (high motion).
6. Conclusions

In this paper, we propose a rate-distortion model for measuring
the motion prediction efficiency and we also develop a mode deci-
sion procedure based on this model for interframe wavelet video
coding. Because the motion information is encoded once and gen-
erates a non-scalable compressed bitstream, it is very difficult to
satisfy the multiple bitrates requirements in the scalable inter-
frame wavelet video coding. The key concept in our model is the
so-called ‘‘motion information gain” (MIG) that represents the cost
and reward trade-off between the texture and the motion informa-
tion. Based on the MIG concept, the MIG cost function is derived to
select motion vectors and decide motion prediction mode. We
show that ideally the MIG-based cost function is bitrate indepen-
dent. Therefore, different from the conventional Lagrangian meth-
od, the proposed mode decision method can deal with multiple
bitrate conditions and is not constrained by single bitrate condition
in theory. In practice, we introduce a temporal-level dependent
parameter to the MIG cost function to compensate the distortion
propagation effect in MCTF. Moreover, to match the real encoding
situation, we identify the parameters in our algorithm from the
experimental data. By adopting the proposed mode decision proce-
dure, the simulation results show promising PSNR improvements
for both the SNR scalability cases and the combined SNR and tem-
poral scalability cases. When we examine the image blocks coded
using the Lagrangian method and our method, the experimental
data show that the proposed method gives better rate vs. distortion
trade-off.
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