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Fast Bi-Directional Prediction Selection
in H.264/MPEG-4 AVC Temporal

Scalable Video Coding
Hung-Chih Lin, Hsueh-Ming Hang, Fellow, IEEE, and Wen-Hsiao Peng

Abstract—In this paper, we propose a fast algorithm that effi-
ciently selects the temporal prediction type for the dyadic hierar-
chical-B prediction structure in the H.264/MPEG-4 temporal scal-
able video coding (SVC). We make use of the strong correlations
in prediction type inheritance to eliminate the superfluous compu-
tations for the bi-directional (BI) prediction in the finer partitions,

, by referring to the best temporal pre-
diction type of 16 16. In addition, we carefully examine the re-
lationship in motion bit-rate costs and distortions between the BI
and the uni-directional temporal prediction types. As a result, we
construct a set of adaptive thresholds to remove the unnecessary
BI calculations. Moreover, for the block partitions smaller than
8 8, either the forward prediction (FW) or the backward pre-
diction (BW) is skipped based upon the information of their 8 8
partitions. Hence, the proposed schemes can efficiently reduce the
extensive computational burden in calculating the BI prediction.
As compared to the JSVM 9.11 software, our method saves the en-
coding time from 48% to 67% for a large variety of test videos over
a wide range of coding bit-rates and has only a minor coding per-
formance loss.

Index Terms—Bi-directional prediction, bi-directionally pre-
dictive frame, encoder optimization, hierarchical prediction
structure, H.264/MPEG-4 AVC scalable video coding, temporal
scalability.

I. INTRODUCTION

F OR the need of delivering digital video over heteroge-
neous network and interacting with devices of different

capacities, the scalable bit-stream approach is developed tomeet
the demands of such applications [1]. A desirable video com-
pression scheme should offer both scalability feature as well as
high coding efficiency. The Joint Video Team (JVT) thus re-
cently, based on the latest international video coding standard
H.264/MPEG-4 AVC [2], [3], standardized the scalable video
coding (SVC) extension [4], [5]. JVT also developed a Joint
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Scalable VideoModel [6] (referred hereafter as JSVM) as an ex-
ample of the SVC encoder that can simultaneously support tem-
poral, spatial, and quality combined scalability within a single
bit-stream. The SVC encoder implements the temporal scala-
bility by using the hierarchical prediction structure [7], [8].
Moreover, the hierarchical prediction structure not only pro-
vides the temporal scalability, it also significantly outperforms
the conventional IPPP/IBBP coding structures in the rate-dis-
tortion (RD) performance.
However, this improved coding efficiency pays a penalty of

huge amount of increased computations.Theymainly come from
the two nested exhaustivemotion vector (MV) searches in the hi-
erarchical-B frames at the temporal enhancement layers. There
are three temporal prediction types in each inter predictionmode.
They are the two uni-directional predictions, forward prediction
(FW) and backward prediction (BW), and the time-consuming
bi-directional prediction (BI). To show the good encoding effi-
ciency, JSVM [6] first runs all the motion estimation procedures
associated with three prediction types. The best prediction type
of each intermode is selected by competing their RD costs. After
that, the bestmode partition is obtained by fully searching for the
one with the minimum RD cost. As a result, the massive compu-
tations at the temporal enhancement layers are mostly due to the
searching process for two sets of encoding tool parameters: one
is the selection of mode partitions, and the other, which is our
focus in this study, is the temporal prediction types.
The concept of the multiple reference frames included in

H.264/MPEG-4 AVC [9] is potentially able to improve the
prediction accuracy. Apparently, its complexity is linearly
proportional to the number of used reference frames. Hence,
a number of prior studies [10]–[17] have tried to reduce these
extra computations. The diversity of the four MVs, obtained
from the Inter8 8 partition mode, determines whether the
reference frames prior to the nearest one should be included
in the candidate set [10]. In [11], the MV decimal value (frac-
tional-pel) is used to estimate which reference frame the moving
object locates. For example, a half-pel MV implies the object
locates more exactly two frames ahead. Therefore, for a given
MV, we can select the closest reference frame as the candidate.
Furthermore, the motion continuity is studied to conjecture the
initial MV search location. The initial MV can be estimated by
the weighted sum [12] or the median [13] of the MVs of the
nearby reference blocks. Then, the search range is significantly
narrowed down. To provide a more accurate initial guess, the
approach proposed in [14] combines the block MVs from sev-
eral previous references. On the other hand, in [15]–[17] the
selection of multiple reference frame is early chosen by a set
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of termination conditions, such as all-zero block detection, the
power of prediction error, and the optimal block partition in the
(first) previous frame. However, Huang et al. [16] empirically
show that the coding gain provided by the multiple reference
frames highly depends on the video contents, not on the number
of searched references, which is also theoretically justified in
[17]. Thus, the multiple reference frames tool does not usually
have noticeable improvement (say, more than 1 dB) in the RD
measure, but it requires a huge amount of computations.
On the other hand, a fairly large body of literature has been

proposed on the complexity reduction of the H.264/MPEG-4
AVC coder, based on the estimated RD cost as thresholds and/or
the known mode selection. In [18], the candidate modes and the
RD cost thresholds are given by the temporally and spatially
neighboring area. Furthermore, the transformed residuals and
the corresponding coding bits have a highly linear correlation
[19]. Based on the non-zero quantized transform coefficients, the
proposed schemes [19], [20] construct an accurate RD estimator
to avoid calculating the true RD values during themode decision
process. Furthermore, a modified Langrangian cost function
[21], composed of the distortion, the motions, and the required
header, eliminates entirely the entropy coding in the decision
process. Another popular approach in fast mode selection is
the so-called early termination [22]–[28]. For example, the
sophisticated mode search can be eased by constructing hier-
archically multiple termination criteria covering large to small
block partitions [22]. In [23] and [24], they theoretically study
the sufficient conditions in detecting all-zero blocks to reject
small partition modes. In addition, several researches use the
spatio-temporalmotion characteristics to prioritize the candidate
modes, such as moving trajectory [25], [26] and spatial motion
homogeneity [27], [28]. All the above schemes are applicable to
the low-delay (IPPP/IBP/IBBP) coding structures, but few focus
on the superior hierarchical prediction in the SVC temporal
scalability. Moreover, the AVC-based fast algorithms could
not be well extended to SVC, because the correlations between
the current frame and its references are often not sufficiently
strong and reliable when they are calculated at the low temporal
layers. In [29], the characteristics of low/high-motion areas at
low temporal layers are employed to select the block mode at
high temporal layers. Lee et al. [30] make use of the statistical
hypothesis testing to conditionally skip the partitions smaller
than 16 16.However, only the encoding parameter in themode
partition is considered in constructing their fast algorithms.
Up to now, very few researchers pay attention to the selec-

tion of temporal prediction types (FW, BW, and BI). Although
these three temporal prediction types can provide highly ef-
ficient compression, they cost more than tripling the motion
search calculation in the IPPP coding structure. Therefore, this
paper aims to design a fast temporal prediction selection algo-
rithm for the dyadic hierarchical-B prediction structure in SVC.
To achieve this goal, we statistically analyze the correlations of
temporal prediction types in large partitions and show that the
BI type has limited coding benefits in small partitions [31]. The
correlations of motion bit-rates among three temporal predic-
tion types are examined and they are formulated by a simple
linear model. Additionally, the relationships among the distor-
tions are also investigated [32] and the prediction error in the
uni-directional temporal predictions tends to be a jointly Lapla-

cian distribution, verified by the goodness-of-fit tests. Hence,
based on these observations, we propose a novel scheme that
avoids unnecessarily massive BI evaluations through the tem-
poral prediction inheritance and the adaptive thresholds in the
hierarchical-B prediction structure of SVC. On the average, our
approaches can provide up to 67% overall encoder time saving
over JSVM 9.11 [6], which is equivalent to three times faster in
the encoding process. Some initial ideas of this paper were pre-
sented separately [31], [32], but many new issues arise due to
merging two separate techniques together. Thus, after solving
these new issues, the revised and integrated scheme is first-time
described in this report.
The rest of this paper is organized as follows. Section II con-

tains a brief review of the hierarchical prediction structure and
its decision process of temporal prediction type in the JSVM en-
coder [6]. Its dramatically encoding complexity is also revealed,
as compared to the IPPP coding structure. Section III summaries
our observations on the correlations among three temporal pre-
diction types. Based on these analyses, Section IV presents our
fast bi-directional prediction selection algorithm. In Section V,
our proposed scheme is compared with JSVM 9.11 [6] and the
state-of-the-art algorithms [29], [30] in terms of complexity re-
duction and RD performance. Lastly, Section VI ends with a
summary of our work.

II. HIERARCHICAL PREDICTION STRUCTURE IN SVC
TEMPORAL SCALABILITY

To have a better understanding of our coding algorithms, this
section explains the basic concepts of hierarchical prediction
structure and it briefly reviews the decision process on the tem-
poral prediction type in the SVC temporal enhancement layers.
In addition, we also examine its complexity based on the empir-
ical data. Some degree of familiarity with H.264/MPEG-4 AVC
is assumed herein. The reader is referred to the overview papers
[3], [5] for details of AVC and its scalable extension.

A. Basic Concepts

Currently, the temporal scalability in JSVM [6] is realized
by using dyadic hierarchical prediction [7], [8]. A set of suc-
cessive images is grouped into the so-called Group of Pictures
(GOP), of which the size is typically power of two. A tem-
poral scalable bit-stream is composed of one temporal base layer
and one or more temporal enhancement layers. For example, if
the GOP size is , then its structure consists of the temporal
base layer and temporal enhancement layers, denoted as

. The last frame of each GOP is an anchor frame.
The anchor frames form the temporal base layer ; they are
coded as either I- or P-frame. The remaining frames, all lo-
cated at the temporal enhancement layers, are coded as the hier-
archical-B frames. Moreover, the BI operation is restricted to
take the weighted sum of one preceding and one succeeding
reference frames for prediction. Such a coding mechanism is
referred to as the hierarchical-B prediction structure. Fig. 1
demonstrates an example of hierarchical-B prediction structure
with , where the notation in frame type de-
notes the frame is -type and located at tem-
poral layer . Moreover, a B-frame takes a past frame and/or a
future frame as its reference(s), both of which are equally dis-
tant from this B-frame.
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Fig. 1. Hierarchical-B prediction structure .

Temporal scalability made by the dyadic hierarchical-B
prediction provides a high compression quality. In comparison
to the commonly adopted IBBP and IPPP coding structures,
the Y-PSNR can be averagely improved by at least 1.0 dB and
2.0 dB, respectively. Moreover, in this structure, experiments
show that each reference list containing only one reference
frame is sufficient. Empirically, the maximum coding efficiency
occurs when the GOP size is between 8 and 32, as reported
in [5].

B. Temporal Prediction Type Selection

To ensure the high compression performance, the SVC en-
coder has to choose the most suitable block partition (mode) that
leads to the optimal tradeoff between distortion and bit-rate
by the Lagrange multiplier method [33]–[35]. Typically, two

major nested processes are fully checked to obtain the optimal
coding parameters: one is the block mode and the other is the
temporal prediction type.
If a specific block mode with size (in pixel)

is applied to an MB, there are sub-blocks
inside this MB. Each sub-block needs to find its best temporal
prediction type . This is done typically by performing the
rate-constrained motion estimation that minimizes the RD
cost :

(1)

where

denotes the set of the uni-directional
temporal predictions {FW, BW},

is the Lagrange multiplier for the
rate-constrained motion estimation
(a commonly used formulation is

[33]–[35]),

is the pixel distortion, usually, the
sum of absolute difference (SAD)
using two MVs given by

(2)

is the sub-block (pixel set)
specified by mode ,

is the predictive motion vector
(pmv) generated by an MV
predictor, (Typically, it is the
median of the neighboring MVs.)

denotes the number of bits
representing the difference
between and the motion
vector ( and/or

),

is the current frame pixel value,

and are the pixel values of the
forwardly and the backwardly
reconstructed frames,
respectively.

The JSVM encoder [6] splits the selecting process of tem-
poral prediction types into two stages, consisting of two uni-di-
rectional predictions (FW and BW) and one bi-directional pre-
diction (BI).
• First stage (FW and BW): The motion-compensated pre-
diction attempts to find the motions and by
minimizing the costs and , separately. In com-
puting (2), we first set and thus
for finding the FW MV; and then set and thus

in the case of BW.
• Second stage (BI):Asmentioned in [36], themotion vectors
found by FW and BW are sub-optimal for BI. Therefore,
the JSVM encoder [6] adopts an iterative approach to find
the optimal MV pair for BI, denoted as and

, by taking and as the initial
search points. For example, the iterative processfirst locally
refines with fixed. Then, is refined
with fixed in the next iteration.Thedetailed analysis
of this iterative approach is referred to [36]. During each
iteration, the JSVM encoder performs the local refinement
by an exhaustive search with a much smaller search range
than that in . Furthermore, the iterative process is termi-
nated if the in the current iteration is not better than that
in the previous one.On the average, it results in about 2.3BI
iterations per MB (or sub-block). Note that the distortion
in (2) computes the difference between the current MB
and the average of two reference MBs by setting ,

, and .
Finally, three sets of distortions and motion bit-rate cost

are collected and compared to produce
the best RD costs and . For example, there are two sub-
blocks in the block mode 16 8. Each of them has its best
temporal prediction type and, say, one is FW and the other is
BI. Then, each of them performs the reconstruction process to
produce the RD performance of this 16 8 block mode. Next,
we pick up the 8 8 mode and there are thus 4 sub-blocks. The
MV search process is repeated for each sub-block and at the end
we obtain the RD cost of this 8 8 mode. We try all possible
modes and finally, we compare all these candidate modes and
select the least RD cost block mode .
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TABLE I
COMPLEXITY RATIO COMPARED TO IPPP (FOR A GOP)

Average CPU time using , 35, 30, 25; JSVM 9.11 [6] with the

encoding parameters in Table VII.

Platform: Athlon 3800+, 64-bit, dual-core processors, 2.0 GB RAM with

Windows XP

C. Complexity Analysis

As discussed earlier, by allowing three temporal prediction
types (FW, BW, and BI), the dyadic hierarchical-B prediction
offers a high compression efficiency. However, its accompa-
nying penalty is the very large amount of computation. Our
statistics, collected from 9 sequences with four selected
values, show very intensive computations in two prediction
structures; one is the hierarchical-B prediction structure (FW,
BW and BI), and the other is only. As listed in Table I, the
complexity increases as the GOP size goes up. The increased
computation is related to the percentage of frames (inside a
GOP) that use multiple temporal prediction types. For example,
there are of frames (in percentage) also
use BW (and BI) for . Therefore, a hierarchical
prediction structure using a large GOP size results in more
computations.
On the average, as compared to the IPPP coding structure,

the hierarchical-B prediction structure introduces additional
240% computations and the uni-prediction structure ( only)
needs only about extra 55% encoding time. More specifically,
the complexity ratio of and the BI is as follows:

Although the complexity of the uni-prediction structure (
only) is much lower than that of hierarchical-B prediction, the

only structure has a coding penalty of about 0.2 dB PSNR
drop and 5% bit-rate increase. Thus, the BI type prediction is
helpful in improving the RD performance but it consumes more
than half of the encoding time. In this study we propose efficient
methods to eliminate the unnecessarily computational load in
calculating BI and to maintain a similar level of coded picture
quality at the same time.

III. STATISTICAL CHARACTERISTICS OF TEMPORAL
PREDICTION AT TEMPORAL ENHANCEMENT LAYERS

In this section, we investigate the statistical correlations
of three temporal prediction types (FW, BW, and BI) at the
SVC temporal enhancement layers. In order to study these
correlations, our strategy is to collect the coding information
by applying the exhaustive search on uni- and bi-directional
predictions before the optimal partition size is determined. In
Section III-A, we examine the prediction type distributions and
their inheritances in the hierarchical blocks from large parti-
tions to small ones. Then, Section III-B analyzes the relative
coding efficiency contributed by the BI. In terms of the RD
costs and the motion bit-rate costs, the last subsection explores
their correlations between and BI. These statistical analyses
are conducted based on encoding one temporal base layer
with four temporal enhancement layers ; that is, the
GOP size is 16. To evaluate the impact, two values, 30
and 40, are tested in experiments. The training set contains nine
MPEG test videos

Due to limited space, we mainly show the statistical data of
the CIF videos and the mean values (“MEAN”), which repre-
sent the average behavior of these nine videos. In addition, the
B-Skip mode calculates the predicted motion vectors to estimate
its cost without actually performing the motion estimation op-
eration. The estimated cost is used to compete with the other
inter modes in making decision (on the optimal block size).
Therefore, the B-Skip statistics are excluded from the following
analysis.

A. Inheritance of Temporal Prediction Types

In this subsection, we collect the probability distributions of
various temporal prediction types.
1) Prediction Type Distributions: We first gather the proba-

bility distributions of temporal prediction types used in several
distinct block partitions at various temporal enhancement layers
and at different values. In any temporal layer of the hierar-
chical-B prediction structure, the temporally forward and back-
ward reference frames have equal distance away from the cur-
rent frame. If the objects move at a constant speed, the current
MB can find its shifted version in either the forward reference
or the backward reference. It implies that the selections of FW
and BW are nearly equally likely, as shown in Fig. 2 for, partic-
ularly, the MOBILE sequence.
The selection of BI is highly dependent on the video con-

tent and the values, especially when the block partitions are
larger than 8 8. Also, BI is selected more often at the high
bit-rates (small ) because the encoder has sufficient bits to
reduce the reconstruction distortion. In the MOBILE sequence,
the BI probability of the 16 16 partition reaches about 80%
at the low temporal enhancement layers, but its probability de-
creases to 20% or less at the high temporal layers. In Fig. 2(c),
BI is generally favored at large partitions (16 16 or 16
8) because BI offers more accurate motion compensation at a
small MV bit-rate overhead. Clearly, distant reference frames
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TABLE II
CONDITIONAL PROBABILITIES OF , AND

Fig. 2. Distribution of temporal prediction types (FW, BW, and BI). (a) FOOT-
BALL; (b) MOBILE; (c) MEAN.

reduce the motion compensation effectiveness. Therefore, BI
percentage goes down drastically at higher temporal layers. On
the other hand, BI needs to transmit more MVs, twice as many
as those of the FW/BW. If the reduced distortion provided by
BI cannot compensate for the increased motion bit-rate cost, the
BI type is not chosen. This is particularly true in the case of
small blocks (4 4, 8 8). Therefore, at the same temporal
enhancement layer, larger partitions prefer BI, especially in the
complex-textured sequence MOBILE.
In summary, BI benefits the 16 16 and

partitions at the lower temporal enhancement layers, but for the
small partitions from 8 8 down to 4 4, BI is seldom selected.
This observation does not seem to be strongly affected by the
video contents and the coding bit-rates.
2) Elimination of BI for Large Partitions: Our second obser-

vation focuses on the use of BI in the parti-
tions. As discussed in Section III-A-1, the BI probability in these
partitions is much smaller than that in the 16 16 block size.
That is, for instance, is less than

, which implies . In
order to find out whether or not these two groups

and overlap with each other, we consider three
conditional probabilities defined below:

In Table II, these three conditional probabilities are higher
than 80% in all cases and are about 95% on average. Moreover,
their total probability is very close to one at higher temporal
enhancement layers. This strong correlation indicates that the
uni-direction prediction types are inheritable from the 16 16
partition to partitions. Thus, the information
of the prior evaluation on 16 16 BI can provide a very reliable
estimate to the use of BI for the partitions at
both low and high bit-rates. We can quite confidently eliminate
the use of BI in those partitions.
3) Consistency of FW and BW in Small Partitions: We now

look into the block partitions smaller than 8 8.We find that we
only need to evaluate the set ; also, the temporal prediction
types of the 8 8 partition are strongly correlated to those of the
4 4 partition. As discussed in Section III-A-1, the probabilities
of using BI for the 8 8 and the smaller partitions are often
less than 20% and 10%, respectively. We collect the following
two conditional probabilities of using FW and BW types. One is
defined by ,
which is equivalent to

.
Typically, the term is less than

2% in our collected data. The probability can
thus be approximated by . Sim-
ilarly defined is close to

. Experiments show that the approximated values of
and are fairly close to data in

Table III. Moreover, these two conditional probabilities slightly
increase at higher temporal enhancement layers, except for the
MOBILE sequence with , of which the correlations are
rather similar for all temporal enhancement layers. Averagely,
the consistency in selecting the same prediction direction can be
up to 90%. Thus, the 8 8 prediction mode information serves
as a good reference to its smaller partitions.

B. Rate-Distortion Contribution by BI

In this subsection, we address the relative RD improvement
offered by BI in different block modes. As investigated before,
the hierarchical-B prediction structure takes the advantage of
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TABLE III
CONDITIONAL PROBABILITIES OF AND

TABLE IV
AVERAGE FOR 16 16, 8 8, AND 4 4 BLOCKS IN EACH TEMPORAL ENHANCEMENT LAYER (IN PERCENTAGE)

using three temporal prediction types to improve the coding
efficiency. According to the rate-distortion theory, a temporal
prediction type with smaller RD cost provides better coding ef-
ficiency. We adopt the RD cost function defined by JSVM [6]
(which came from essentially the rate distortion theory) and col-
lect all , , and for three squared-shape partitions,
16 16, 8 8, and 4 4. For each sub-block , we define
the relative RD improvement , offered by the best temporal
prediction type , as follows:

(3)

The overall relative RD improvement is the sum of of

all sub-blocks; that is, , where
. Furthermore, in order to quantitatively determine

the coding efficiency of using BI in the squared blocks,
we define a BI performance index by

(4)
In other words, the index , ranging from 0 to 1, indicates
the percentage of the relative RD improvement contributed by
BI for the totality of an size block. Moreover, a large

value shows that the BI has a significantly relative im-
provement in and that the BI should not be skipped.
Fig. 3 depicts the performance index value for each hierar-

chical-B frame. As shown, the relative improvement offered by
BI at high bit-rates is superior to that at low bit-rates because
the encoder has more bits to reduce the distortion. This superi-
ority at different bit-rates is particularly noticeable in the large
16 16 partition. On the other hand, the BI type usually fur-
nishes less than 20% improvement on and , even at
high coding rates.

Fig. 3. Measure index for individual hierarchical-B frame.

Table IV shows the average benefits offered by the BI type
at various temporal enhancement layers. As illustrated, the per-
formance index values decrease as the partition becomes finer.
The has relatively average values of 24% and 57% for

and , respectively; that is, BI plays an im-
portant role in improving coding efficiency for large partitions.
For the 8 8 partition, the effect of BI plunges to 11% on av-
erage, which says that the set is sufficient to provide a good
compression. Furthermore, when the partition is getting finer
down to 4 4, the contribution of BI can be ignored because

is less than 3% typically. However, some test videos such
as MOBILE need BI can achieve better RD performance for
both 16 16 and 8 8 partitions, because its and
values reach 88.6% and 40.0%, respectively. In conclusion, the
BI prediction type offers little coding gain for the block parti-
tions smaller than 8 8.

C. Rate-Distortion Relationships Between Uni-Directional
Predictions and biDirectional Prediction

In this subsection, we are interested in the relationships be-
tween and BI in motion bit-rate cost and residual distortion.
We collect the following information in our experiments: (a) the
motion vector (MV) difference, (b) the motion bit-rate cost ,
and (c) the distortion for the three temporal prediction types.
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Fig. 4. PDFs and CDFs of the vector difference . (a) FOOTBALL; (b) MO-
BILE; (c) MEAN.

The statistical observations and theoretical analyses on the ex-
perimental results are reported below.
1) Motion Vector Difference: In order to find the correlations

of two cost terms and between these temporal predic-
tion types, we examine the MV differences after the MVs are
refined by the BI search process. We look at two square block
partitions, 16 16 and 8 8. On the JSVM 9.11 platform [6],
we search for the best MVs of different prediction types for a
specified block partition . Their notations are as follows:

As described earlier, the BI search process takes and as its
initial search points for motion estimation. The Euclidean dis-
tance is used to measure the MV difference and

(5)

We statistically gather the 16 16 and 8 8 blocks that
choose BI as their best temporal prediction type for generating
the probability distributions (PDF) and cumulative probabili-
ties (CDF) of and , as shown in Fig. 4. As shown,
the PDFs of the MV difference are strongly clustered around
the starting search points. Particularly, the one-pixel probability

is close to 90% for the MOBILE. That
is, most of the MVs after locally refined by BI are still very
close to and . Typically, the MV differences are
within three pixels; the CDFs of MV differences less than three
pixels usually reach 80% or more. Our experiments show that

Fig. 5. Distributions of motion bit-rate cost. (a) 16 16 partition size with
; (b) 8 8 partition size with .

different block partitions have similar probability distributions.
The similarity in the two motion pairs
and is the foundation of the following
analysis.
2) Motion Bit-Rate Cost: Our second study tries to iden-

tify the correlation of the motion bit-rate costs between
and BI. As discussed in Section III-C-1, the MVs,
and , produced by BI are often close to and

, respectively. In addition, the motion bit-rate cost is pro-
portional to theMV length. Based on those two observations, we
anticipate that there exists a strong correlation in motion bit-rate
cost between and BI. More specifically, since the BI opera-
tion needs twoMVs to fetch two reference blocks for prediction,
we collect the motion bit-rate costs of three temporal prediction
types, , , and to find
out the relationship between and the combined cost of ,
denoted as .
As depicted in Fig. 5, the distributions of and

are noticeably concentrated along a straight line; this high corre-
lation is foreseen because and

, as discussed earlier. This implies that
and . Therefore, we make use of

the first-order regression to represent the motion bit-rate cost
by . Here, the motion bit-rate cost is mod-

eled as an affine function of . This regression for
based on is thus formulated as

(6)

where and are the regression parameters. Furthermore, ac-
cording to the collected data, the term in the regression model
is usually nearly zero because when
and when . The first-order model is
thus simplified to a linear function,

(7)

Applying the least squares technique, we can thus determine the
optimal value by

(8)
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TABLE V
OPTIMAL VALUES FOR THE LINEAR REGRESSION MODEL

As tabulated in Table V, the optimal for 16 16 and 8
8 block partitions is around 0.93 and it slightly decreases at

the higher temporal enhancement layers. Different block par-
titions have similar slope values. This linear model,

, is a rather good approximation to the real
because the percentage error is 11.3%.
Here, in this linear regression model is 0.93, which is the av-
erage value of MEAN.
3) Distortion Relationship: Our last study addresses on the

correlations in the distortions of different prediction types. We
obtain an upper bound of and will construct an approxi-
mated distribution of (denoted as ).
For a given partition mode, the SAD metric used to

evaluate its distortions of is defined by (2), unfolded as

(9)

The distortion is calculated by two nested summations over
and , is the current block,

is the reference block in the direction, and
are the components of . Furthermore, each prediction error

denotes its corresponding location in the block differ-
ence, . In the BI case with
equal weighted prediction, its distortion value is defined by

(10)

Because the MVs finally adopted by BI are close to those
produced by , the value of may be approximated by

, namely

(11)

As shown below, the average of can be derived
as an upper bound of by using the well-known triangle
inequality.

(12)

In addition to derive an upper bound of , we verify that
the probability distribution of is a Gamma distribution as
described in the Appendix. The statistical tests indicate that the
pair of tends to be bivariate-Laplacian distributed.
This distribution model is used to construct a set of adaptive
thresholds in Section IV.

IV. PROPOSED FAST TEMPORAL PREDICTION
SELECTION ALGORITHM

In this section, we develop a fast temporal prediction type
selection algorithm for the dyadic hierarchical-B prediction
structure based on the observations in Section III. We derive a
set of adaptive thresholds that efficiently eliminate unnecessary
BI evaluations in Section IV-A. Then, combined with the
adaptive thresholds, our proposed schemes are elaborated in
Section IV-B.

A. Adaptive Thresholds

The highly correlated motion bit-rate costs and distortions be-
tween and BI are used to develop a set of thresholds for
block partitions from 16 16 to 8 8. According to the infor-
mation obtained from the FW and BW processes, we can build
a BI motion bit-rate cost estimator and a BI distortion estimator
for a specified block.
As analyzed earlier, the motion bit-rate costs of

and are related by a linear regression model; that is, an es-
timated motion bit-rate cost of BI, , is modeled as

. Moreover, among different block sizes, the op-
timal slope does not change much, which ranges from 0.86
to 0.97. Hence, the mean value of of all block partitions
(sizes) is adequate for all cases in estimating the motion bit-rate
cost .
Next, we try to estimate from the probability model of

and the percentage of the exception case of .
Occasionally, is not an upper bound of if the
chosen BI is inferior in terms of distortion. (Note that the MV
chosen by BI is judged by its better combined RD value, not
by the distortion value only.) From our collected data, the ex-
ception is 1% 5% on the average for
different block partitions.
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TABLE VI
VALUES AND VALUES

As a consequence of the preceding discussions, the mean
value of 1 is sufficient to represent , namely, the es-
timated distortion is

(13)

As discussed earlier, (Normally,
indicates that the MV refinement in BI is effective.) and

5 for dif-
ferent block sizes. The probability

can be calculated for a fixed . Therefore, we can de-
termine the relationship between and without
any knowledge of , as listed in Table VI. For example, the
probability is 3.6% from
our experimental data.

(14)

From the above, we can derive
where denotes the inverse

CDF of . Furthermore, it yields

(15)

Finally, using the definition in Table VI, an estimate of
(for the partition mode) is represented by

(16)

In addition, the percentage error is
around 12.5%.

B. Algorithm Overview

The flowchart in Fig. 6 depicts our proposed algorithm on
eliminating the futile BI calculations. It mainly consists of two
early termination criterions. First, a part of ineffective BI is
skipped by the strong consistency in the temporal prediction
types of large partitions. Then, the remaining unnecessary BI
can be further detected by making use of the adaptive thresh-
olds. The proposed approaches are split into three major stages,
described below.

Stage 1: Conditionally Exhaustive Temporal Prediction
Type Search for Inter16 16. The Inter16 16 partition

1The notation represents the Gamma distribution, where is the
shape parameter and is the scale parameter.

Fig. 6. Selection algorithm for temporal prediction types.

mode conditionally checks all FW, BW, and BI types to
identify its best temporal prediction type to be used in the
Stage 2.

Step 1.1: Exhaustive Search on Uni-directional Pre-
dictions. For the current MB, the set is evaluated
in order to collect their distortions ( and )
and motion bit-rate costs ( and ) that will be
used in Step 1.3. If the MB is located in the two highest
temporal enhancement layers ( and ), denoted
as HTEL, go to Step 1.3; otherwise, go to Step 1.2.
Step 1.2: BI Evaluation at Lower Temporal En-
hancement Layers. At the temporal enhancement
layers , the BI is always tested. Go to
Stage 2.
Step 1.3: Conditional BI Execution at Higher Tem-
poral Enhancement Layers. Using the information
obtained from Step 1.1, the threshold can be
obtained by

(17)

If these two conditions and
are satisfied, the BI process is

performed. Otherwise, BI is judged ineffective and
thus skipped. Go to Stage 2.

Stage 2: Early Termination on BI for Large Partitions.
Before entering the Stage 2, the best temporal prediction
type is determined in Stage 1. Two steps of this
stage predict whether or not the BI type in

partitions have an inferior RD performance and
thus can be excluded from testing. Section IV-B-1 details
the early termination procedure.

Step 2.1: Exhaustive Uni-directional Prediction
Type Search for Partitions .
To gather the distortions ( and ) and mo-
tion bit-rate costs ( and ) of partitions

, the set is calculated.
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Step 2.2: Pre-decided BI Elimination for Partitions
. If the pre-determined information

is not BI, go to Stage 3. Otherwise, continue.
Step 2.3: Provisory BI Expulsion by Adaptive
Thresholds. Similar to Step 1.3, the adaptive thresh-
olds are obtained by

(18)

where . The BI type
is calculated if the specifications
and are both true. Otherwise, the
BI type is discarded.

Stage 3: Adaptive Prediction Type Selection for Small
Partitions. Due to the strong correlation between the pre-
diction type of 8 8 and those of the smaller partitions,
we can skip the less probable prediction types by checking
the 8 8 prediction type. The Section IV-B-2 elaborates
our implementation.

1) Early Termination on BI for Large Partitions: Based on
our observations discussed earlier, the prediction type infor-
mation of Inter16 16 partition mode is useful in skipping
the BI type for large block partitions. More precisely, the con-
ditional probabilities, , , and

, can suggest whether the unnecessary compu-
tations of BI of partitions can be avoided
if the 16 16 partition is of the BI type. Thus, in Step 2.2, the
saved computations in BI for large partitions depend on the BI
selection rate for the 16 16 partition. Furthermore, for the case
that is BI, the remaining superfluous BI can be detected
by the thresholds in Step 2.3.
2) Adaptive Prediction Type Selection for Small Partitions:

As suggested by our previous analysis for small partitions, we
notice that (a) 10% blocks or less are coded with BI, (b) BI con-
tributes less in improving compression efficiency as compared
to , and (c) small partitions often have the same prediction
types as that of their inherited 8 8 parent block. These three
observations help us in developing an adaptive prediction selec-
tion algorithm for small partitions.
The 8 8 or smaller blocks are seldom coded with BI. As

discussed earlier, the prediction type of a smaller partition can
be reliably estimated by its 8 8 parent partition. Thus, each
smaller partition refined from an 8 8 partition only needs to
check one prediction type. Furthermore, the candidate can be
well predicted by comparing the and of its associ-
ated 8 8 partition, even if its BI is not calculated in Stage 2.
Therefore, in Stage 3, reduction in computation for small parti-
tions can be achieved by skipping either FW or BW.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Test Conditions

For performance assessment, we have implemented the pro-
posed algorithms in JSVM 9.11 [6] and have tested 19 typical
video sequences in four resolutions (QCIF/CIF/4CIF/HD for-
mats), covering a broad range of visual characteristics. Our pro-
posed schemes focus on the complexity reduction at the tem-

TABLE VII
TESTING CONDITIONS

poral enhancement layers in the dyadic hierarchical-B predic-
tion structure. The detailed encoder parameters are given in
Table VII and the other parameters are the default values set
by the reference software JSVM 9.11 [6].

B. Performance Measures

To show the change in RD performance, we adopt the
Bjontegaard metric [37], [38], which needs four RD points
to measure the averaged Y-PSNR [BDP (dB)] and bit-rate
differences [BDR (%)] between the two RD curves pro-
duced by JSVM 9.11 [6] and by our schemes, respectively.
Hence, we separate eight values into two sets, denoted
by and , to measure the average RD perfor-
mance for a wide range of bit-rates. These two sets
are and

To measure the average speedup performance at these eight
RD test points, we define time saving (TS) for the whole
encoding process and the complexity reduction on the hierar-
chical-B frame process only.
1) The overall time saving is defined as

(19)

where and denotes the en-
coding time of JSVM 9.11 [6] and that of our schemes
with quantization parameter , respectively. The nota-
tion is the number of elements in the set .

2) In this measure, the denominator
is the additional computing time

due to the use of hierarchical-B frames, compared to the
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TABLE VIII
TIME SAVING CONTRIBUTED BY TP AND AT (AVERAGED FROM TO )

low-delay IPPP coding structure. Similarly, the numerator
is the additional computing time of using our fast algo-
rithms, shown in (20) at the bottom of the page, where

represents the encoding time
of JSVM 9.11 [6] with the IPPP coding structure and
quantization parameter . Thus, represents
how much additional encoding time our approach needs
(compared to the IPPP coding structure).

C. Performance Comparison With JSVM

Table VIII and Table IX present the time savings of the
proposed schemes in comparison with JSVM 9.11. Listed in
Table VIII are the improvements contributed by the inheritance
of temporal prediction type (TP) and the adaptive thresholds to
eliminate the superfluous BI computation (AT), respectively.
The results are obtained by comparing the running time of the
encoder with the following configurations:

Setting #1: JSVM 9.11 versus JSVM 9.11+TP: The TP set-
ting makes use of the information produced by the 16 16
partition size to skip the BI type in the
partitions. For the block sizes smaller than 8 8, they only
evaluate one of the uni-directional predictions, depending
on the encoding information of 8 8.
Setting #2: JSVM 9.11 versus JSVM 9.11+AT: The AT
setting uses the adaptive thresholds to conditionally select
the BI type within the candidate set in the block partitions
from 16 6 to 8 8 after performing FW and BW.

It can be seen that enabling the TP alone can averagely re-
duce the overall running time by 50%, equivalent to a speedup
of about 2 , whereas the AT offers only a moderate time saving
of 17% 27%. Because the TP setting considers the temporal
prediction selection in all block modes, it provides more com-
plexity reduction, as compared to the AT setting. Interestingly,
the results are similar regardless of the GOP size.
To see their combined effects, Table IX provides the time sav-

ings relative to the exhaustive search, with both TP and AT en-
abled. The results given in these two tables correspond to two
GOP sizes: 8 and 16. As can be seen, when the TP is cou-
pled with the AT, an average saving of 62% for the overall en-
coding time is achieved. In other words, we can observe an ap-
proximated 3 speedup. The improvement is achieved with a
minor change in both bit-rate and Y-PSNR, as confirmed by the
BDP/BDR values in the tables and the RD curves in Fig. 7. As
discussed before, the BI examination in the encoding time is
about . That is, the improvement in
is generally limited to 55% when the BI computations are all
skipped. However, our method can go beyond this limit, because
in our algorithm the small partitions keep only one temporal
prediction from for evaluation. Furthermore, the
values demonstrate that the additional computation required by
the hierarchical-B prediction structure can be averagely reduced
by 89%. (The average is around 11%.)
The overall time savings in Table IX are not the sum of the

results from Table VIII. In our approach, we set two succes-

(20)
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TABLE IX
PERFORMANCE COMPARISONS WITH JSVM 9.11 [6]

Fig. 7. Comparisons in RD curve . (a) QCIF; (b) CIF; (c) 4CIF;
(d) HD (720p).

sive criterions to conditionally eliminate the BI computation,
as illustrated in Fig. 6; one is TP, and the other is AT. However,
their contributions are overlapped for someMBs; that is, if these
MBs satisfy the first TP criterion, the AT criterion is not active
in our design flowchart. Hence, with the average time saving of
50% by the TP, the AT criterion can additionally provide about
12% improvement. The additional improvement comes from the
cases when the 16 16 partition is not BI, and the AT condi-
tion is satisfied. For example, in Fig. 2(a), about 70% of MBs
do not select BI at (with ) when 16 16 partition
is examined. In this case, our algorithm skips these 70% of BI
calculations. In total, there are 85% of 16 8 partitions do not
prefer BI in our collected data. Therefore, only the remaining

15% of 16 8 partition blocks are further checked by the AT
criterion for further complexity reduction.
Moreover, in Table X, the overall time saving decreases as the
value becomes small. The complexity reduction goes down

from 67% to 48% as decreases. This is due to the combined
RD cost that affects the selec-
tion of temporal prediction type. Such an optimization principle
tends to cut down the motion bit-rate term when is large.
On the other hand, because of the abundant bit budget, this opti-
mization process spends more bits to reduce the distortion term

at a small . Thus, BI is used more often for small
values because BI is effective in reducing the distortion. Hence,
fewer BI blocks can be skipped by our approach.

D. Performance Comparison With Other Fast Algorithms

In addition to the exhaustive search, we also compare our ap-
proaches with two well recognized fast algorithms, Li’s method
[29] and Lee’s method [30]; both save the computing time based
on mode reduction. Therefore, our approach is very different
from theirs. Nevertheless, for comparison purpose, the same en-
coding configuration and test videos (Table VII) are used in the
experiment (on JSVM 9.11).
As shown in Table XI, the Li’s method [29] can averagely

achieve about 55% time reduction and has a Y-PSNR loss of
0.11 dB and 2.8% bit-rate increase. The Lee’s method [30] has
the best time saving at about 65%, but it has also the highest
coding quality loss, 0.15 dB Y-PSNR and 3.6% bits. Our
scheme has roughly the least RD loss, 0.08 dB Y-PSNR and
1.8% bits, and its time saving is about 62%. If all are mea-

sured in ratio, our time saving is better than [29] by about 10%
with a slightly better RD quality. And our time saving is slightly
worse than [30] by 5% but both the PSNR and the bit rate losses
are 50% better. However, we like to point out that our approach,
focusing on the temporal prediction type reduction, is very dif-
ferent from the fast mode decision schemes in [29] and [30]. In



3520 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 12, DECEMBER 2011

TABLE X
AVERAGE TIME SAVING FOR TWO GOP SIZES, 8 AND 16, WITH VARIOUS VALUES

TABLE XI
PERFORMANCE COMPARISONS (AVERAGE BDP, BDR, AND TS)

other words, we are not aiming at the same target; in contrast,
our scheme may be combined with these schemes to achieve
further complexity reduction. Simulations also indicate that our
scheme is not sensitive to the video variation. Thus, instead of
mode selection, reducing candidates in temporal prediction can
be a promising approach for decreasing complexity in the hier-
archical-B prediction structure.

VI. CONCLUSIONS

In this paper, we propose an effective temporal prediction
type selection algorithm for the dyadic hierarchical-B predic-
tion structure in SVC [4], [5], in which the unnecessary BI cal-
culations are skipped for large block partitions and only one of
the uni-directional temporal predictions is calculated for small
partitions. The techniques used are (a) conditional elimination
of BI for large partitions, (b) adaptive thresholds produced by
the information obtained in the FW and BW processes, and
(c) adaptive selection of FW and BW for small partitions. We
first perform the uni-directional temporal predictions, FW and
BW. Then, we make use of the strong correlations in the inher-
itance of temporal predictions and also construct a set of adap-
tive thresholds, both of which decide the BI operation is to be
performed or not. To construct a reliable threshold, we examine
the correlations of motion bit-rate costs and the distortions be-
tween the uni-directional temporal predictions and the BI type.
Also, our statistical analysis shows that BI in small partitions
does not contribute much in improving compression efficiency.

These findings in the temporal enhancement layers are intelli-
gently used for accelerating the encoding process.
On the average, our scheme can demonstrate up to 65.3%

complexity reduction for the entire encoding process with
minor changes in coding efficiency, as compared to JSVM
9.11 [6]. Also, the extra computations in the hierarchical-B
prediction can be reduced by up to 93.9%. Hence, our approach
can achieve a similar coding performance of JSVM 9.11 [6] but
with much lower computational complexity. Moreover, our fast
algorithm only reduces the complexity in temporal prediction
types without any a priori mode reduction and can be applied
to all enhancement coding layers.

APPENDIX

In Section III-C-3, we have derived the upper bound of ,
as shown in (A.1). In addition, we further study its probability
distribution in this appendix.

(A.1)

Ideally the FW and BW operations can find the shifted ver-
sion of the current block if there are no quantization error and
noise in the reference frames. As a result, most correlations be-
tween frames can be removed by the inter prediction, except for
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the prediction error term, composed of the quantization error
and noise. Typically, the prediction error from FW and BW
is nearly Laplacian distributed, as reported in [39]. Hence, we
assume that the ’s inside a block have the i.i.d. Laplacian
distribution, and so do the ’s. Also, we assume the data in
one block have the same statistical parameters such as mean and
variance.
Next, for a specific location , we like to show that the

and pair is jointly Laplacian. Note that al-
though two random variables and are marginally Lapla-
cian-distributed, it does not imply the pair is jointly
Laplacian. We adopt a popular goodness-of-fit test to examine
the distribution of . It is the Pearson’s -test

Chi-square test: The -test divides the data range into
mutually exclusive and exhaustive intervals (events),

denoted by . The -test statistic is defined as
[40]

(A.2)

where is the total number of data samples in a block,
is the observed frequency (number of samples) of the

event , and is the expected value of the event
( is the model probability of event ). Essentially, the
-test statistic shows the difference between the empirical

frequencies and the model-derived mean values.
These two tests measure the similarity between the collected

observations and a chosen model distribution. We pick up the
following two bivariate distributions to match our collected
data.

Bivariate Gaussian distribution: The commonly used bi-
variate Gaussian distribution is defined as

(A.3)
where two random variables and form the vector ,
is the expected value of , the covariance matrix

, and is the correlation between

and .
Bivariate Laplacian distribution: The bivariate Lapla-
cian distribution has heavier tails than the bivariate
Gaussian distribution and its PDF is defined by [41]

(A.4)
where is the modified Bessel function of the second
kind.

In the data fitting process, we decide two parameters and
by adopting the approach of method of moments [42], [43].

Again, the distribution parameters of each block are calculated
individually because they may vary from block to block. After
the parameters of these two bivariate PDF are determined,
we evaluate how well they match the empirical data of pair

.
We examine this goodness-of-fit test in two distinct block

sizes, 16 16 and 8 8. The empirical data are evaluated
against these two selected model distributions. In Table A-I,

TABLE A-I
AVERAGE TEST-STATISTIC VALUE FOR TEMPORAL ENHANCEMENT LAYER

the reference model is better than the other model in terms
of the -test statistic . The value of usually varies from
16 to 33, but the value of is about 60 on average. We
thus conclude that the collected data are closer
to the bivariate Laplacian distribution. We also use another
goodness-of-fit test, Kolmogorov-Smirnov test (KS-test), and
the conclusion is similar. Additional test data and discussions
can be found in [44].
After we use the jointly Laplacian distribution to

model , we can derive the distribution
of ;

namely, the distribution of . According to the property of
Laplacian distribution [41], a linear combination is
one-dimensional Laplacian distribution if and are jointly
Laplacian. Hence, the term

(A.5)

is also Laplacian distributed. Moreover, from the probability
theory, the absolute value of a Laplacian distribution is expo-
nentially distributed and the sum of i.i.d. exponential distribu-
tions forms a gamma distribution, as shown below [45], [46].

(A.6)

Hence, should have a Gamma distribution , where
is the shape parameter and is the scale parameter.
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