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Most previous studies on visual saliency focused on
two-dimensional (2D) scenes. Due to the rapidly
growing three-dimensional (3D) video applications, it
is very desirable to know how depth information
affects human visual attention. In this study, we first
conducted eye-fixation experiments on 3D images. Our
fixation data set comprises 475 3D images and 16
subjects. We used a Tobii TX300 eye tracker (Tobii,
Stockholm, Sweden) to track the eye movement of
each subject. In addition, this database contains 475
computed depth maps. Due to the scarcity of public-
domain 3D fixation data, this data set should be useful
to the 3D visual attention research community. Then, a
learning-based visual attention model was designed to
predict human attention. In addition to the popular 2D
features, we included the depth map and its derived
features. The results indicate that the extra depth
information can enhance the saliency estimation
accuracy specifically for close-up objects hidden in a
complex-texture background. In addition, we
examined the effectiveness of various low-, mid-, and
high-level features on saliency prediction. Compared
with both 2D and 3D state-of-the-art saliency
estimation models, our methods show better
performance on the 3D test images. The eye-tracking
database and the MATLAB source codes for the
proposed saliency model and evaluation methods are
available on our website.

Since the stereoscope was first invented, three-
dimensional (3D) media has been recognized as an
important next-generation visual media. Because the
stereoscopic content can provide additional depth
information and improve the viewing experience, many
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stereoscopic techniques ranging from 3D content
acquisition to 3D display have been investigated.
Although there has been a rapid growth in 3D research,
3D media still has a number of unsolved issues, and
many of them are closely related to the human visual
system (Yarbus, 1967; Posner, 1980).

One of the most noticeable research directions is
3D visual attention. For many applications in image
processing, such as image cropping, thumbnailing,
image search, quality assessment, and image com-
pression, it is very useful to understand where humans
look in a scene (Li & Itti, 2008; Judd, Ehinger,
Durand, & Torralba, 2009). Our goal in this study
was to construct a computational model for 3D
attention. We first discuss the impact of binocular
depth cues on human visual attention. Then, several
existing 3D eye-tracking data sets and 3D visual
attention models are briefly reviewed. One important
part of our work is to design and collect the NCTU-
3DFixation data set using stereo images and eye-
tracking devices. To examine the consistency of our
data set, we present an analysis on our data. Our
main contribution is proposing a learning-based 3D
saliency model and evaluating its performance on two
data sets. In addition, the role of individual features
and their combinations in our model is examined and
reported.

Although people are interested in attention modeling
on stereoscopic 3D content, only a very small number
of studies on this subject have been reported.
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Influence of binocular depth cues on visual
attention

In addition to the monocular cues that can induce
depth perception, the stereoscopic videos provide
binocular cues, enhancing our depth perception.
Several studies were reported on how human attention
may be affected by binocular depth cues. Jansen, Onat,
and Konig (2009) investigated the influence of disparity
on human attention based on their two-dimensional
(2D) and 3D still-image experiments. Their results
show that the additional depth information leads to an
increased number of fixations, shorter and faster
saccades, and increased spatial extents of exploration.
Therefore, they concluded that depth information
changes the basic eye-movement patterns and, thus,
that the depth map can be an essential image salient
feature.

By presenting the 2D and 3D versions of the same
video content to viewers, Hiakkinen, Kawai, Takatalo,
Mitsuya, and Nyman (2010) demonstrated how ste-
reoscopic content could affect eye-movement patterns.
Their results suggest that the eye movements on 3D
content are more widely distributed. Huynh-Thu and
Schiatti (2011) also examined the differences in visual
attention between 2D and 3D content. However,
different from Jansen et al. (2009), Huynh-Thu and
Schiatti (2011) used video clips rather than still images.
The average saccade velocity was found to be higher
when viewing 3D stereoscopic content, which is
consistent with the results reported by Jansen et al.
(2009).

Although it is generally agreed that images with
higher luminance variation attract humans’ attention,
Liu, Cormack, and Bovik (2010) found that the higher
variations in disparity gradient and contrast somehow
create a forbidden zone, where the left-eye and right-
eye images cannot be fused properly by the human
brain. Therefore, human subjects do not pay attention
to the areas with high variations in disparity. Several
studies were cited in their paper to support their
proposition.

The previous findings indicate that human eye-
movement patterns are influenced by both the image or
video content and the values of disparity. However, our
experiments showed that the difference in watching 3D
images (vs. 2D images) is most significant only for the
first three fixations. Once the viewing time is sufficiently
long, the 2D low-level features still dominate human
visual attention.

3D fixation data set

The lack of a 3D fixation data set with ground truth
has limited the development of a 3D visual attention
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model. To the best of our knowledge, so far only three
published data sets contain 3D images, depth maps,
and eye-fixation data as below.

Jansen data set

Jansen et al. (2009) compared the fixation difference
on 2D and 3D still images. They recorded binocular
eye-movement data on viewing the 2D and 3D versions
of natural, pink-noise, and white-noise images. How-
ever, their data set contained only 28 images, which is
insufficient to train a learning-based saliency model.

3DGaze

Wang, Da Silva, Le Callet, and Ricordel (2013)
created and published an eye-tracking database con-
taining 18 stereoscopic images, their associated dis-
parity maps, and the eye-movement data for both eyes.
The stereoscopic images in their database were
acquired from two sources: (a) 10 images came from
the Middlebury 2005/2006 image data set, and (b) eight
images, which were captured by the authors, came from
the IVC 3D image data set. Similar to the Jansen data
set, this data set size is quite small.

NUS-3DSaliency

Lang et al. (2012) described a fairly large human eye-
fixation database, which contains 600 2D versus 3D
image pairs viewed by 80 subjects. The depth infor-
mation came directly from a Kinect depth camera, and
the eye-tracking data were captured in both 2D and 3D
free-viewing experiments. The range of the Kinect
depth sensor is limited to about 4 m, and because the
Kinect depth sensor is strongly affected by ambient
lighting, it is not suitable for outdoor scenes. Therefore,
the smoothed depth maps are inaccurate for some
cases, and the variety of the scenes is somewhat
restricted. Another issue is that all the 3D stimuli were
generated by virtual view synthesis, which is sensitive to
depth map errors. The authors tried to remove the
artifacts in the depth maps and carefully picked up the
better quality images. Thus, the data set should be quite
useful; however, the synthesized 3D images of this data
set are not available to the public.

Therefore, we conducted 3D image fixation experi-
ments of our own and compiled a set of data. We
posted these data on the Internet, which hopefully will
be useful to the researchers studying this subject.

3D visual attention models

Currently, only a few computational models of 3D
visual attention can be found in the literature. Nearly
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all of these models contain a 2D stage in which the 2D
visual features are extracted and used to compute the
2D saliency maps. This structure matches the findings
in Jansen et al. (2009). They found that there is no
significant difference between the viewing of 2D and
3D stimuli regarding the 2D saliency map derived
based on 2D visual features. This consistence of 2D
low-level visual features for 2D and 3D stimuli implies
the possibility of adapting the existing 2D visual
attention models to the 3D visual attention model. Th-
erefore, Wang et al. (2013) classified these 3D attention
models into three categories depending on how they
used the depth information.

Depth-weighting models

Apart from detecting the salient areas by using the
2D visual features, these models add a step in which the
depth information is used as a multiplicative weighting
factor in generating the 3D saliency map (Maki,
Nordlund, & Eklundh, 1996; Chamaret, Godeffroy,
Lopez, & Le Meur, 2010; Y. Zhang, Jiang, Yu, & Chen,
2010; Lang et al., 2012). Lang et al. (2012) analyzed the
major discrepancies between the 2D and 3D human
fixation data of the same scenes, which are further
abstracted and modeled as novel depth priors. In order
to determine saliency, Lang et al. extended seven
existing models to include the learned depth priors. The
final saliency can be achieved by simply using
summation or point-wise multiplication as the fusion
operation of two components. By using different
evaluation methods, they observed a 6% to 7% increase
in prediction accuracy using depth priors.

Y. Zhang et al. (2010) proposed a bottom-up
stereoscopic visual attention model to simulate the
human visual system. Spatial and motion saliency maps
were constructed from features such as color, orienta-
tion, and motion contrasts. Then, a depth-based
dynamic fusion was used to integrate these features.
However, only the attention detection experiment was
performed to evaluate the performance of their model.
There are no actual eye-tracking data to determine the
accuracy of their model.

Depth-saliency models

This type of model first extracts depth-saliency maps
based on the depth map. These depth-saliency maps are
then combined with the 2D saliency maps using a
pooling strategy to produce a final 3D saliency map
(Ouerhani & Hugli, 2000; Potapova, Zillich, & Vincze,
2011; Wang et al., 2013).

Wang et al. (2013) proposed a model that takes
depth as an additional visual feature. The measure of
depth saliency is derived from the eye-movement
data obtained from eye-tracking experiment using
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synthetic stimuli (Wang, Le Callet, Tourancheau,
Ricordel, & Da Silva, 2012). Wang et al. (2013)
believed that there are several advantages of using
the synthetic stimuli. First, it can precisely control
the depth of the object and background. Second, the
influence of 2D visual features on viewing behavior
and the influence of monocular depth cues can be
restricted. Instead of directly using the depth map,
the authors used a probability-learning algorithm to
model the relationship between the depth contrast
(applying a Difference of Gaussians (DoGQG) filter on
the depth map) of each position and the probability
of this position being gazed at. Finally, by combining
the depth-saliency map and the 2D saliency map, the
predicted saliency map was generated. Their results
show that the depth information can actually
improve the performance of using the 2D saliency
model only.

Stereovision models

This type of model takes into account the mechanism
of stereoscopic perception in the human visual system
(HVS). Bruce and Tsotsos (2005) extended the existing
2D attention architecture to the binocular domain, in
conjunction with the connectivity of units involved in
achieving stereovision, but no detailed implementation
or evaluations were reported.

Kim, Sanghoon, and Bovik (2014) combined the
well-known perceptual and attentional principles with
the traditional bottom-up low-level features. Then,
they came up with a detailed and sophisticated
saliency prediction model for stercoscopic videos. This
model can be considered as a combination of the three
types of 3D visual attention models mentioned above.
It first produces 3D space—time salient segments
(regions) in a video sequence and then calculates the
saliency strength of different scene types (classified
based on motion information). More importantly, the
authors used two additional visual factors (foveation
and Panum’s fusional area) to increase the prediction
precision.

Most of the existing 3D visual attention models
belong to the first (depth-weighting model) and second
(depth-saliency model) categories. Although the depth-
weighting model can easily adopt the existing 2D
models, it may miss certain salient regions signified by
the depth features only. On the other hand, the depth
value alone is not a reliable attention cue. In a number
of scenes the floor has a smaller depth value because it
is close to the camera, but the observers are often not
interested in the floor. Therefore, combining the depth
map directly with the 2D saliency map sometimes
misidentifies the salient area.

Although several computational models of 3D visual
attention have been proposed, most of these works did
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not report subjective experimental results in evaluating
the proposed models (Maki et al., 1996; Bruce &
Tsotsos, 2005; Chamaret et al., 2010; Potapova et al.,
2011; Wang et al., 2012). The very first challenge of
modeling the 3D visual attention is how to reliably
collect and interpret eye-tracking data. Most studies on
3D visual attention have used the tracking data
recorded from only one eye. Wang et al. (2013) argued
that binocular recordings are necessary for recording
3D gaze despite the fact that such eye-tracking
equipment can provide only a 2D spatial gaze location
individually for each eye.

One plausible approach is using two images of the
same scene obtained from slightly different viewing
angles. It is then possible to triangulate the distance to
an object with a high degree of accuracy. However,
using the triangulation of two 2D gaze points from
both eyes to produce a single 3D gaze point is highly
dependent on the calibration accuracy of the system.
In the case of an experiment using 3D stimuli, it is
difficult to ensure that the observer accurately looked
at the point at the given depth plane. Thus, further
studies are needed to specify the standard protocols
for conducting eye-tracking experiments, and a
reliable procedure is needed for analyzing the eye-
tracking data.

Our NCTU-3DFixation data set comprises 475 3D
images along with their depth maps and the eye-
fixation data. The 3D images, eye-tracking data, and
accompanying codes in MATLAB are all available at
http://cwww.ee.nctu.edu.tw/wiki/core/pmwiki.
php’n=People.HangResearchMaterial.

Image content

Instead of using the virtual view synthesis techniques
to generate the test images (stimuli), or dataset aims to
provide the same viewing experience when the users
watch regular entertainment 3D videos. Therefore, our
3D content mainly came from existing 3D movies or
videos. Figure 1 shows the 11 sequences collected,
including four movie trailers, three 3D videos from
3dtv, and four videos from YouTube. We captured the
image frames randomly from the left- and right-eye
videos separately and interlaced a 3D image pair into a
full high definition (HD) image row by row. We
carefully sieved out the distorted or unnatural images
and selected 475 good-quality 3D images as our test
image database.
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Depth information

One of the most challenging parts of constructing a
3D eye-fixation database is the depth information, and
this may explain why only a few eye-fixation databases
for 3D images exist. The depth maps in the NUS-
3DSaliency data set came from the Kinect depth
sensor. As discussed earlier, it imposes some limita-
tions. Because our collected 3D images have only
pictures (no depth maps), our depth maps are
generated using Depth Estimation Reference Software
(DERS; version 5.0) provided by the International
Telecommunication Union/Moving Picture Experts
Group (ITU/MPEG) standard committee (Tanimoto,
2012). Some sample depth maps together with their
pictures are shown in Figure 1.

To achieve a higher accuracy, the original DERS
software uses three camera views to generate one depth
map for the center view. However, in our case, we have
images only from the left and right views. Therefore, we
treat the right image as the center view used by the
software, and the left image is fed to both the left and
right views in the software. By doing so, the produced
depth map is located on the viewing point of the right
image. (It also requires some additional modifications
to the DERS source code.) We choose the right view as
the base (or reference) because approximately two-
thirds of the population is right-eye dominant. That is,
our sense of spatial structure is more likely based on the
viewpoint of the right eye. (Because the same left and
right images are used to estimate the depth maps, the
right-view depth map and the left-view depth map
contain the same amount of information.) This is
different from many other visual experiments, such as
the work by Wang et al. (2013) and many others, which
choose the left image as the base image.

Data collection

In constructing our data set, we used a Tobii TX300
eye tracker (Tobii, Stockholm, Sweden) to accurately
track the eye movements of the subjects (see Figure 2).
Note that the sampling rate of the Tobii TX300 is up to
300 Hz, but in our experiment we set it at 120 Hz due to
the use of polarization glasses, which seem to decrease
the tracking reliability at higher sampling rate. This
system allows the slight movement of viewers’ heads.

We recorded the eye-tracking data of 16 users
(subjects). All 3D images were displayed on a 23-in.
patterned retarder 3D display (Asus VG236H, Asus,
Taipei, Taiwan) at a resolution of 1920 X 1080, a
refresh rate of 120 Hz, a brightness of 400 cd/m?, and a
contrast ratio of 100,000:1. The average viewing
distance was 78.5 cm. The interocular crosstalk was
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Figure 1. The 475 3D images captured from 11 3D videos, which come from YouTube and 3dtv. The depth maps are generated by
DERS. The figure shows the original images (first row), the generated depth maps (second row), and the human fixation density maps
(third row) in the NCTU-3DFixation database.

imperceptible (<1%) when watching directly in front of calibration so that the eye tracker could flawlessly

the center of the display. locate the gaze point at nearly any location on the
All subjects (both males and females; aged 18-24 screen. Only the subjects whose tracking error was less
years) were asked to precisely complete the nine-point than 5 mm (about 0.37°) were included in our database.
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| \
Figure 2. Experimental setup: 3D images are displayed on a 23-

in. 3D display, and the Tobii TX300 eye tracker is used to track
the user’s eye movement at a 120-Hz sampling rate.

The eye tracker successfully tracked eye movement,
with an average of 95.7% of experiment time for all 16
subjects. The lowest tracking time was 90.1% of
experiment time and the highest was 99.6%. All the
experiments were conducted in a dark room to provide
the best sense of depth for 3D images and to reduce the
distraction caused by other objects in the room.
Using the E-Prime 2.0 software (Psychology
Software Tools, Pittsburgh, PA), the 475 chosen 3D

4s 2s 4s 2s 4s
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images were randomly divided into five sections.
Every picture was displayed for 4 s, and a transition
picture with a fixed white cross on the center was
displayed for 2 s as illustrated in Figure 3. Users were
asked to take a 10-min break between two viewing
sessions to reduce fatigue. Our presentation time for
every stimulus was set to 4 s, which is similar to
several other experiments reported: 6 s for the NUS-
3DSaliency data set (Lang et al., 2012), 2 s for the
FIFA data set (Cerf, Frady, & Koch, 2009), 4 s for
the Toronto database (Bruce & Tsotsos, 2009), 3 s for
the Massachusetts Institute of Technology (MIT)
database (Judd et al., 2009), and 5 s for the NUSEF
database (Ramanathan, Katti, Sebe, Kankanhalli, &
Chua, 2010). The only exception is the 3DGaze eye-
tracking database (Wang et al., 2013), in which the
presentation time is set to 15 s, which is much longer
than the others. Additionally, the literature shows
that compared with the 2D experiments, the addi-
tional depth sensation leads to an increased number
of fixations, shorter and faster saccades, and an
increased spatial extent of exploration (Jansen et al.,
2009; Hikkinen et al., 2010). Therefore, we adopted
the 4-s presentation time, which seems to be adequate
for 3D visual attention research (further discussed
later).

- |
LCD MONITOR
VGe3AH

=4

—

E-Prime extension for Tobii

2s 4s 2s 4s

Figure 3. Testing procedure: The 475 chosen images are randomly divided into five sections by E-Prime. Each image is displayed
sequentially, with a transition (dummy) picture between two presented images.
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Figure 4. Average human density map over all 475 images (16
subjects).

Human fixation density map

The fixation maps were constructed directly from
the recorded fixation points of all subjects. The
transition picture had only a white cross in the center,
the purpose of which was to keep the user’s attention
on the center of the screen. Therefore, the first
detected fixation point at the beginning of each image
presentation was the screen center, which was image
content independent.

In order to produce a continuous fixation map of
an image, we adopted a smoothing technique that
convolves a Gaussian filter with all fixation points. In
a way, the recorded fixation points are samples of the
Gaussian distributions on the ground truth fixation
map. Examples of fixation density map (with Gauss-
ian smoothing) for 11 images are shown in Figure 1.
The brighter pixels denote the higher fixation values
(higher probability). Because different values of the
sigma parameter in the Gaussian smoothing filter
produce different density maps, its value consequently
affects the saliency model derived based on the
fixation map. In order to simulate the human visual
system, we set the sigma parameter of the Gaussian
filter the same as the size of the fovea. According to
our experimental setup, the sigma value was set to 96
for our fixation density maps.

This database aims at quantitative analysis of
fixation points and gaze paths and provides the
ground truth data for saliency model research.
Therefore, we examined the reliability and consistency
of the collected data. We also estimated its upper
theoretical performance limit (UTPL; Stankiewicz,
Anderson, & Moore, 2011). We followed the proce-
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Figure 5. Similarity scores of AUC, PLCC, and NSS for individual
subjects.

dure suggested by Stankiewicz et al. (2011). The
MATLARB codes for this evaluation can be found at
http://cwww.ee.nctu.edu.tw/wiki/core/pmwiki.
php?n=Pecople. HangResearchMaterial.

Center bias

In our data set we observed a strong center bias,
which previously has been reported by the other eye-
tracking data sets (Tatler, 2007; L. Zhang, Tong,
Marks, Shan, & Cottrell, 2008). Figure 4 shows the
average human density map from all 475 images. This
center bias phenomenon is often attributed to the
setup of the experiments, in which subjects sit at a
central location in front of the screen and the objects
of interest tend to be placed in the center of an image
frame. We also noticed that a center bias component is
essential for any saliency model, as discussed in the
works of Judd et al. (2009) and Zhao and Koch
(2011).

Individual subject consistency

We adopted several metrics, including the area
under the receiver operating characteristic (ROC)
curve (AUC), Pearson linear correlation coefficient
(PLCC), and normalized scanpath salience (NSS), to
evaluate the difference between two subjects (Peters,
Iyer, Itti, & Koch, 2005; Stankiewicz et al., 2011). By
definition, NSS evaluates the (predicted) salience
values at the fixation locations (Peters et al., 2005). It
extracts all the predicted saliency values at the
observed fixation locations along a subject’s scanpath
and then averages these values to calculate the NSS
score.

To check the consistency of individual subject
fixations, we used the fixation density map of one
subject as the predictor to predict the fixation density
maps of the other 15 subjects. The total similarity for
one reference subject is computed as follows.
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Variable AUC PLCC NSS Similarity EMD

UTPL 0.893 0.928 2.537 0.803 1.463

Table 1. The UTPL of the NCTU-3DFixation data set. The results
were calculated by five metrics: AUC, PLCC, NSS, similarity, and
EMD.

Sk - Matching score of the nth user to predict
the others on the kth image
Skn = [Sk1 Sk2 k.16 |

similarityy
[ max(Sk,) — min(Sk,), whenmin(Sk,) = Sk
10, when min(Sy ,) # Sk.n
475
Similarity, = similarityy ,
k=1

Thus, Sy, is the score of how well the nth user
predicts the others (on the kth image). The similarityy,
for each subject is set to the difference between the
maximum and the minimum scores, if the score of the
nth subject is the minimum of all the subjects;
otherwise, it is assigned to zero. Each similarity score of
one subject for AUC, PLCC, and NSS is the sum of all
475 images. As shown in Figure 5, a lower similarity
represents that the subject’s data are rather different
from that of the others, and a higher score indicates
that this subject agrees with the others in the attention
regions. This similarity score helps in judging the data
reliability of a subject.

Upper theoretical performance limit

We also computed the UTPL, which indicates the
consistency of the data (Stankiewicz et al., 2011). The
results are listed in Table 1. The UTPL is the similarity
between the fixation density map obtained from half of
the human observers (randomly selected) and the
fixation density map produced by the other half of the
observers. If the data set is very consistent, the UTPL
value should be close to the maximum of that similarity
measure. If the data set itself is not consistent, the
learning based saliency model derived from this set of
data may not be accurate.

In calculating the UTPL, in addition to AUC,
PLCC, and NSS, we used similarity and Earth’s mover
distance (EMD; Rubner, Tomasi, & Guibas, 2000; Pele
& Werman, 2009; Judd, Durand, & Torralba, 2012).
Similarity is a measure of how similar two distributions
are. After each distribution is normalized, the similarity
measure is the sum of the minimum values at each
point in the distributions. EMD captures the global
discrepancy of two distributions. That is, given two
distributions, EMD measures the least amount of work
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Figure 6. Scores of AUC and NSS versus the number of fixations.

needed to convert one distribution to the other one. We
repeated this process 100 times for each test image to
achieve a robust estimation. The higher score indicates
a more consistent data set. Except for the EMD score,
the scores of AUC, PLCC, and similarity range from 0
to 1. The results, which are shown in Table 1, indicate
that our data set is rather consistent. (One may
compare our results here with similar works of Engelke
et al., 2013, and Wang et al., 2013.)

Fixation numbers versus score

As discussed in the literature, the divergence of
human fixation location increases when the presenta-
tion time in the subjective test increases. Therefore, we
also examined the AUC and NSS values against the
(time-ordered) number of fixations. As depicted in
Figure 6, the consistency of human fixation data
decreases as the time extends (i.e., more fixation points
are included). Note that the initial fixation point
(picture center) is ignored; thus, “the first five fixations”
actually means the first six fixations without the first
one. The average number of fixations of each stimulus
for all subjects and images of our data set was 10.

In the previous sections, we discussed the importance
of depth information in 3D saliency modeling. Differ-
ent from the previous 3D attention models that
combine the existing 2D model directly with the depth
map, our scheme finds the best weighting of the existing
2D features together with a possibly new type of 3D
(depth) feature. We believe that integrating with the
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extra depth information may change the original 2D
saliency model.

For this purpose, we used a learning-based saliency
model design similar to that of Judd et al. (2009). They
collected the eye-tracking data of 15 viewers on 1,003
images and used this database as training and testing
samples to produce a saliency model making use of the
low-, mid-, and high-level image features. We extended
their work by modifying, replacing, and adding new
image features to their model and conducted training
using the 3D images.

Features used in machine learning
Low-level features

All the features we use are discussed in this
subsection. One sample image and its corresponding
features are shown in Figure 7. For the low-level
features, we adopted the local energy of the steerable
pyramid filters, which has been found to be physio-
logically plausible and strongly correlated with visual
attention (Simoncelli & Freeman, 1995). Additionally,
we adopted the features that are combinations of all
subband pyramids suggested by Rosenholtz (1999) and
Oliva and Torralba (2001). Our feature set also
included the three channels (intensity, color, and
orientation) proposed by Itti and Koch (2000). We
discovered that the color channels used by Judd et al.
(2009) are extremely important for predicting saliency
regions. These color channels include the values of the
red, green, and blue channels as well as the probabilities
of each of these channels and the probability of each
color as computed from the 3D color histograms of the
image filtered with a median filter at six different scales.

Mid-level features

According to the work by Judd et al. (2009), because
most objects rest on the surface of the Earth, the
horizon is a place humans naturally look for salient
objects. Judd et al. (2009) thus train a detector from
mid-level gist features to detect the horizon line (Oliva
& Torralba, 2001). We also included this feature in our
model.

High-level features

Many studies showed that viewers are more likely to
fixate on faces and persons. Thus, we used the face
detector proposed by Viola and Jones (2001) and the
Felzenszwalb person detector (Felzenszwalb, McAlles-
ter, & Ramanan, 2008) to locate the region of the
humans face and body. After these detectors deter-
mined a location, a Gaussian distribution was placed
on that location to spread out the probability

Ma & Hang 9

distribution of a salient region. The scale parameter of
the distribution was set to the window size of the
located region.

Center bias

A strong center bias, which has been previously
reported, dominates the observational behavior in the
existing eye-tracking data sets (Tatler, 2007; L. Zhang
et al., 2008). We also observed a strong center bias from
the average fixation density map of all 475 images in
our database. Thus, we included a center bias feature in
our 3D saliency model.

Depth features

According to the study of Wang et al. (2013), the
same disparity value can produce different perceived
depth due to the other viewing conditions. Therefore,
they proposed a transformation that maps an original
disparity map to a perceived depth map. Also, they
introduced a depth-based saliency map, which is
generated by applying a difference of Gaussian filter to
the depth map based on the assumption that the depth
is noticed mostly at surface discontinuities (Didyk,
Ritschel, Eisemann, Myszkowski, & Seidel, 2011).

However, we found that viewers typically focused on
the body of interesting objects rather than the
boundaries of the objects (also reported by Liu et al.,
2010). Therefore, in addition to the original depth map
and the normalized depth map, we applied steerable
pyramid filters to the depth map to increase the depth
predictability. The idea is that the depth-related spatial
structure can be represented by the orientation features
at different scales. The combinations of these different-
scale orientations give a clue in finding the locations of
the corresponding salient objects. More details are
described in the Discussion section.

In addition to the original depth, the normalized
depth map, and the depth-based orientation informa-
tion, we added one more set of depth features. We
multiplied the depth features (different orientations and
scales) by the normalized depth map pixel by pixel. This
can be viewed as the combination of a depth-weighted
model and a depth-directed saliency model.

CovSal features

A concept called region covariance was introduced
by Erdem and Erdem (2013) to address the issue of how
separate feature maps are combined to produce a
master saliency map. In their model, so-called CovSal,
only the Lab color feature, the orientation, and pixel
location were used to represent an image pixel. They
used the covariance matrices of simple image features
as the metafeatures for saliency estimation. We found
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S that their saliency estimation method has good

[ potential to identify interesting objects of normal size

(not too small or too large), especially when the object
SE (B0 - number is small. Thus, we include the output of the

y Orlentatlon CovSal model as a feature (CovSal feature) to locate

Highpass r = 7 : e interesting objects.

’ TVl eda ' T Py All of the above features have different effects on the

performance of the saliency modeling or estimation.

These factors are further discussed in the Performance

section.

ad

Training by support vector machine

Color Y
In order to train our saliency model, we adopted a
support vector machine (SVM) classifier developed by
Chang and Lin (2011) to predict the possibility of a
pixel being fixated. The ground truth data came from
our NCTU-3DFixation database described earlier.

We divided the 475 images into 425 training images
and 50 testing images. On each image, we chose 20
pixels labeled as positive samples from the top 5%
salient regions of the merged human fixation density
map and 20 pixels labeled as negative samples from the
bottom 70% salient regions. We found that the choices
of the percentage of positive and negative samples are
very important. Judd et al. (2009) chose the top 20%
salient region for their positive samples because their
ground truth distribution (human fixation density map)
is less diverse. In our case, the choice of top 5% for the
positive samples would result in more precise allocation
of the saliency regions.

Every image was resized to 200 X 200 pixels before
feature extraction, and every image feature was directly
extracted from the right view of a stereo pair because

Subband of NDepth map —— the depth maps of the data set are generated for the
Highpass r Scale 1 . Scale 2— — . . .
- right view as discussed before.
;‘J\( Wy :\(\1'. "A '\& We applied the same normalization process as in
l : ' : i ) 8 Judd et al. (2009) to the feature space. In order to have
; Scale 3- zero mean and unit variance of each feature, we
' ﬁ [Z ﬂ normalized each feature separately in the training data
and applied the same normalization parameters to the
Subband of NDepth map X NDepth test data. . . .
nghpass Saer i In SVM algorithm selection, we chose the linear

' & & kernel over the radial basis function kernel because
‘ \ they both perform about equally well but the linear
‘] ﬂ model requires less computational time than the radial

““““““ basis function kernel. We used a simple greedy

) } algorithm with the misclassification cost parameter set
“ /ﬁ to 6.

Figure 7. Features maps used in our model, including Evaluation methods
orientation, color, Itti channels, Torralba, CovSal, horizon, center,
people, face, and depth information. Several evaluation methods for measuring the

accuracy of a saliency model have been proposed. After
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Model AUC PLCC NSS Similarity EMD
Proposed model 0.837 0.688 1.594 0.562 2.430
Judd et al. (2009) 0.829 0.621 1.367 0.540 2.544
CovSal (Erdem & Erdem, 2013) 0.811 0.650 1.434 0.620 2.743
Proposed model without CovSal 0.837 0.629 1.400 0.531 2.555

Table 2. Performance comparison on our data set, including the proposed model, the model of Judd et al. (2009), and the CovSal

model.

some investigation, we choose five evaluation metrics:
AUC (Stankiewicz et al., 2011), PLCC and NSS (Peters
et al., 2005), similarity (Judd et al., 2012), and EMD
(Rubner et al., 2000; Pele & Werman, 2009).

Performance

The performance of our model was tested on two
databases. First, the model was tested on our NCTU-
3DFixation database and was compared with the other
top saliency models. Second, we applied our model to
the 3DGaze database created and published by Wang
et al. (2013).

Performance on the NCTU-3DFixation database

In the experiments on the NCTU-3DFixation data
set, the training and testing processes were repeated 20
times (20 experiments) to obtain robust results. In each
experiment, 425 randomly selected images were used
for training and the rest were testing images. We
computed the evaluation metrics (scores) of the testing
images for each experiment separately; the average
scores of 20 experiments are shown in the first row of
Table 2. The weighting parameters of our final model
come from the average of the weighting parameters in
these 20 experiments. For comparison, we also tested
the proposed model without the CovSal feature as well
as the models proposed by Judd et al. (2009) and
Erdem and Erdem (2013) on the same data set. These
two models are currently two top-rated 2D models on
the saliency benchmarks (Judd et al., 2012). However,
on the 3D data set, our model outperformed these two
models for nearly all the commonly used performance
indices. Some predicted saliency maps are shown in
Figure 8. Both our model and the model of Judd et al.
(2009) have the center bias feature; therefore, we added
a center bias to the predicted saliency map of the
CovSal model because their original center bias was
multiplied by a Gaussian distribution with a presa-
liency map, and this multiplicative center bias some-
times decreases the performance of their model. As
discussed earlier, the CovSal model is able to locate

nearly all salient objects in an image, and indeed the
CovSal feature can improve both PLCC and NSS
metrics.

Note that, first, the car detection in the model of
Judd et al. (2009) is discarded due to its long computing
time and small contribution to the performance.
Second, the models of Judd et al. (2009) and Erdem and
Erdem (2013) were originally designed for 2D images
(not 3D images). Thus, they may not perform as well as
our model on the 3D data. On the other hand, the only
extra information associated with the 3D images is the
depth map. We next discuss that the depth information
is important for certain cases but that, on average,
excluding the depth information in our model does not
reduce the performance metrics much.

2D model versus 3D model

In our experiments, we found that the major
difference between watching 2D and 3D content
typically appears in first three fixations. After the first
three fixations, the distribution of the accumulated
fixation density map converges to a stable map, as
shown in Figure 9. Note that the (first) initial fixation
point (i.e., picture center) is ignored, and thus “the first
three fixations” actually means the first two fixations
without the first one. Generally, the fixation map
convergence is achieved in 4 s (image display time) and
there are about 10 fixations for each image. During this
4-s period, human observers tend to pay attention to
the most interesting objects in the first few fixations.
Then their eyes move to the other areas in a test image
and later focus on the most interesting objects again.

To further explore the 2D and 3D modeling
differences, we compared the Judd model and ours
against the number of fixations as shown in Figure 10.
In this plot only NSS and EMD are displayed because,
among five evaluation metrics, they show more
significant differences between these two models.
Indeed, our model (3D model) shows better perfor-
mance on the first few meaningful fixations. With more
fixations, the EMD metric favors the Judd model and
the NSS metric favors ours. Overall, considering the
other metrics as well, our model produces somewhat
better results.
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Figure 8. Original images (first row), human fixation density maps (second row), and our predicted saliency maps (third row) in the
NCTU-3DFixation database.

Performance on the 3DGaze database movement data for both eyes. We applied our saliency
model to these 18 images; the resultant AUC and
Wang et al. (2013) created and published an eye- PLCC metrics are shown in Table 3, and some
tracking database containing 18 stereoscopic images predicted saliency maps are shown in Figure 11.
with their associated disparity maps and the eye- Although our proposed model has better performance,
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Original Image

5 fixs 6 fixs 7 fixs

8 fixs 9 fixs 10 fixs

Figure 9. The human fixation density map varies with the number of fixations.

it is not as good as that on the NCTU-3DFixation

database. This is because some of their test images

contain text or symbols, which are hard to predict by
Performance vs Fixations using simple feature extractors, but humans would

35 focus on reading the text in a scene. For example, there
are some letters in the second image of Figure 11,
. 3 EMD marked by red rectangles. Almost all the human
€55 o . obser\(ers.focused.on these letters. Another qxample is
£ - the third image; viewers tended to pay attention to the
e 2 two letters on the stone in the lower right corner.
& NSS Also, as discussed earlier, the fixation ground truth
15 map was created based on the observed eye-tracking
" Judd_NSS data; however, different procedures for creating the
2fixs 3fixs 4fixs 5fixs 6fixs 7fixs 8fixs 9fixs 10fixs ground truth map may lead to dlffe,rent grqund truth
# of fixations maps. Although the same database is used in compar-
ison, the procedure used by Wang et al. (2013) for
Figure 10. NSS and EMD metrics in our model and Judd et al’s creating the ground truth map is somewhat different
(2009) model based on the number of fixations. from ours and thus, in certain cases, the ground truth
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Model AUC PLCC

Proposed model 0.742 0.542
Wang et al’s (2013)  Itti’s model (1998) 0.656  0.356
model Bruce’s model (2009) 0.675 0.424
Hou’s model (2007) 0.670 0.410

Table 3. Performance comparison on Wang’s dataset (Wang et
al., 2013).

Ma & Hang 14

maps are different. Figure 12 depicts some extreme
cases in which two ground truths (fixation density
maps) show significant differences. For the first scene
(Figure 12, left), our ground truth map clearly focuses
on the stone in the lower right corner, which has two
letters on it. In contrast, the ground truth map
provided by Wang et al. focuses on the center of the test
image. The same phenomenon can be found in the
second scene (Figure 12, right). This difference may be
due to the displacement compensation added by Wang
et al. in creating the gaze point map. In this approach, a
displacement, which can be horizontal or vertical, is

Figure 11. Examples of original images (first row), fixation density maps (second row), and our predicted saliency maps (third row) in

the 3DGaze database.
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Figure 12. Original image and fixation density maps from Wang et al. (2013) and our fixation density maps.

added to the coordinates of each right-eye gaze point.
The displacement of each gaze point comes from the
right-to-left disparity map. In contrast, we believe that
the disparity is mainly along the horizontal direction.
Therefore, only horizontal displacement is used in our
procedure, and the results seem to be generally closer to
the expectations.

Impact of each feature

We collected a number of features in the literature to
predict the saliency map. At the end of the training
process, our model was a linear combination of these
feature values (maps). Therefore, the weight associated
with a specific feature indicates the importance of that

feature in predicting fixation. Figure 13 shows the
weight distribution of all features used. For example, if
a pixel has high values in both the center and the face
feature maps, it means that there is a face at the center
of the image and, thus, a human would likely pay
attention to it. Some of the features we used (e.g., color,
orientation, face, people, and center bias) were
extremely important in our saliency prediction model.
Which features were more essential than the others? It
is possible that the weight of feature A is low because it
coexists with features B and C. Thus, feature A may
become one of the more essential features if features B
and C are dropped. It is certainly a useful exercise to
identify a minimum set of features that can provide
good saliency map prediction. One advantage of the
feature space dimension reduction is that it reduces
computational time and memory.

For the purpose of finding the essential feature set,
we selected several indispensable features individually
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and tested their saliency map prediction performance.
Then, we added features or replaced a few others and
tested again. We could not exhaustively try all possible
combinations of our features. The selected combina-
tions of feature sets and their performance are
summarized in Tables 4 and 5.

Note that we included the shuffled AUC (sAUC; first
introduced by L. Zhang et al., 2008) to test the impact
of various features. The main advantage of using the
sAUC is that it emphasizes the off-center information
and favors the true positives. The SAUC value of the
center feature is near 0.5, which is consistent with the
MIT saliency benchmarks (Judd et al., 2012).

Each column in Tables 4 and 5 is the set of selected
features used together to predict the saliency map. The
center bias feature alone provides a PLCC value of
0.542, an AUC value of 0.780, and an sAUC value of
0.507. This result is consistent with many reports that

Orientation * *
Color * *
Itti

Horizon

Center * * * *
Face

People

Depth

CovSal

AUC 0.779 0.815 0.804 0.823
sAUC 0.507 0.595 0.562 0.594
PLCC 0.538 0.595 0.571 0.604
NSS 1.022 1.285 1.180 1.319
Similarity 0.529 0.539 0.529 0.537
EMD 2.981 2.628 2.755 2.596
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The weight distribution of all the low-, mid-, and high-level features. Refer to Figure 7 for the corresponding feature maps.

the center bias is the most essential feature in saliency
map estimation. Thus, it is always included in our test
feature sets. Table 4 examines each feature separately
(together with the center bias). Statistically, the
orientation and the color features are very influential
on the performance. Another very important feature is
CovSal. If we pick up only CovSal and the center bias,
their performance is quite close to the best result we are
aware of, such as Judd et al. (2009). In a way, the
contribution of the orientation and the color feature set
overlaps a lot with that of the CovSal feature. That is, if
one set is selected, the other does not add much further
improvement. Given the center bias, the rest of the
features do not seem to increase the performance
drastically. Note that the CovSal features contribute
little to the SAUC score. This may be due to the final
processing step in the CovSal model, which combines
all the saliency maps at different scales by using the

* * * * *
*
*
*
*
0.799 0.788 0.787 0.795 0.810
0.544 0.511 0.522 0.538 0.529
0.562 0.569 0.551 0.564 0.657
1.191 1.090 1.082 1.110 1.455
0.533 0.540 0.531 0.515 0.625
2.816 2.992 2.895 2.883 2.727

Table 4. Impact of each feature together with center bias.
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Orientation *

Color *

Itti *

Horizon * * * * *
Center * * * * *
Face * * * * *
People * * * * *
Depth *

CovSal *
AUC 0.795 0.827 0.808 0.808 0.813
sAUC 0.533 0.610 0.563 0.556 0.538
PLCC 0.584 0.627 0.588 0.597 0.671
NSS 1.141 1.352 1.253 1.202 1.508
Similarity 0.545 0.546 0.543 0.525 0.632
EMD 2.930 2.607 2.805 2.793 2.678

Table 5. Impact of high-level features.

multiplication operation. This likely amplifies the
importance of the high salient regions and degrades the
rest, which lowers the SAUC score.

In addition, we examined the performance with only
the orientation, color, depth, and center features. We
selected 12 orientation, color, and depth features with
high weighting values (numbers 6, 12, 17, 18, 30, 44, 45,
46, 47, 56, 58, and 60 in Figure 13) and reran the
training procedure; the results are shown in Table 6.
Note that the dimensionality has been significantly
reduced, but its performance is still quite close to the
case with all 61 features.

As discussed earlier, the steerable pyramid filter
features on the depth map are introduced to improve
the depth predictability. Figure 13 shows a specific
weight pattern for features numbered from 44 to 47,
which are associated with the steerable pyramid filters.
These four weightings of different orientation decom-
positions indicate how the steerable pyramid filters
extract the structural information from the depth map
and how they are used to identify the salient objects. If
a human observer is given only the depth image
(instead of color image), he or she can still point out the
strong salient objects in a scene, such as a human head,
based on their depth map shapes. Thus, a good model
should also be able to make proper use of the depth
information. The weights in Figure 13 are trained by
SVM on our collected data set.

Model AUC PLCC NSS Similarity EMD

Proposed model with 0.824 0.614 1.327 0.538 2.566

only highest weighting
features

Table 6. Performance of the 12 highest weighting features.

Difficult cases and high-level features

We observed that some images are especially easy to
predict, as shown in Figure 14. These images generally
have a simple-texture background and contain only one
or two interesting objects. On the other hand, our
saliency model performs poorly on some other images.
After careful examination, we observed that in most of
these images most interesting objects are located at the
border of the image, and thus the center bias fails. Two
examples are shown in Figure 15. Two people and the
monkey statue in the first image are located in the left
and right corners. Even though our model can
successfully recognize the two faces in the left bottom
corner, the center bias feature still dominates the
saliency map. The same phenomenon appears on the
second sample image, in which a group of people is
located in the lower left corner.

Indeed, many studies have revealed that faces and
people in a picture attract human attention. However,
in our experiments, these two features did not show
much improvement over the center bias alone. This
owes to two reasons. One is that the percentage of test
pictures featuring faces and people is rather low. The
other is that the detector used to identify their locations
is not very reliable. Misidentification happens from
time to time. One example is shown in Figure 7. There
are three faces and three people in the original image;
however, the face detector misidentified some regions
as faces, and the people detector failed on the people in
the center and the left side of the image. Examining the
predicted saliency map, we concluded that the face and
people features are critical to the specific cases in which
these subjects show up but the other features do not
assign large values to them. Because these cases are few,
the average result is not very significant. In conclusion,
to enhance the accuracy of saliency map estimation on
every image, reliable face and people features are
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Figure 14. Easy-to-predict images. First row: original images. Second row: fixation density maps. Third row: predicted saliency maps.
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Figure 15. Difficult cases in which our saliency model works poorly. First row: original images. Second row: fixation density maps.
Third row: predicted saliency maps.
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Fixation density map

Prediction without Depth

Figure 16. A case in which depth information is critical: complicated texture.

needed. They are complementary to the other features
in certain cases.

Depth feature

The depth feature alone in our 3D scenes provided
an average performance improvement (in addition to
the center bias). To further study the influence of depth
features, we trained another saliency model without
using any depth information. After comparing the
results from these two models, we noticed that the
depth features are essential for certain images. Two
such examples are shown in Figures 16 and 17.

Figure 16 shows a fish swimming near the ocean
floor. The complex background makes it hard for the

Original

Depth map

model without depth information to locate the object
(i.e., fish) that humans pay attention to. In Figure 17,
the interesting objects (i.e., two people) are not located
at the center. These two people stand in the left corner
and are close to the camera. The depth feature helps to
allocate them and, consequently, the accuracy of the
saliency model is significantly improved in this case.
Thus, the depth feature is complementary to the other
features in certain cases and can improve the saliency
prediction quite a lot in these cases.

In Table 5, we include the face and people features in
the basic feature set, which comprises the horizon
feature and the center bias. We included additional
features to test their performance. This comparison
attempted to find the impact of each low-level feature.
Similar to the observations from Table 4, the orienta-

Fixation density map

Prediction with Depth

Prediction without Depth

Figure 17. Another case in which depth information is critical: The interesting objects are away from the center.
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tion and color features are very useful, and statistically
the CovSal feature provides nearly the most improve-
ment. However, the computation time of orientation
features is only about 1 s and that of color features is
about 8 s, while the computation time of the CovSal
features is about 20 s per image. To save computation,
a set of well-tuned weightings of the orientation and
color features can achieve a comparable result.

This paper first describes the NCTU-3DFixation
data set, which includes 475 3D images along with their
depth maps and the eye-fixation data. We believe that
this data set should be beneficial to the 3D visual
attention research community, especially because its
size is sufficient for training a learning-based saliency
model. By applying the SVM algorithm to our data set,
the best weights for low-, mid-, and high-level features
were derived. The learning-based model was tested on
two data sets, and the performance indicated that our
model outperforms the known 2D and 3D models.
After analyzing the data sets and comparing the feature
weights in our model, we observed that the difference
between watching 2D and 3D content is generally not
very significant. However, there are some differences in
the first a few fixations. Similar to the face and people
features, the depth features are critical for certain
difficult images. We also examined the performance of
each feature and concluded that together with the basic
center bias feature, the orientation and color features
with their well-trained weights can achieve nearly the
best performance. To facilitate the use of our 3D
fixation data set, we released the data set together with
the MATLAB codes for raw data extraction, visuali-
zation, SVM training, and evaluation methods on our
website.

Keywords: visual attention, saliency map, depth
saliency, eye-fixation database
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