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ABSTRACT Online multiclass classification is a specific problem of online learning that performs a
sequence of multiclass classification tasks given the knowledge of previous tasks. The goal is to make
correct predictions for this sequence. It is generally considered a more complicated problem than its binary
counterpart, online binary classification. A popular algorithm, called the passive-aggressive algorithm, was
primarily proposed for binary problems and later extended as the multiclass passive-aggressive (MPA)
algorithm for multiclass problems. The nature of MPA allows itself to implement the kernel trick, which
enables us to make better predictions with a kernel-based model. However, this approach suffers from the
curse of kernelization that causes unbounded growth of the model in memory usage and runtime. To solve
the growth problem, we first introduce a resource perspective that gives an alternative and equivalent
interpretation of the kernel-based MPA algorithm. Based on the resource perspective, we propose the
budgeted MPA (BMPA) algorithm, which approximates the kernel-based MPA algorithm. BMPA limits
the maximum number of available resources by removal and fully exploits them through a constrained
optimization. We study three removal strategies and give a relative mistake bound that provides a unified
analysis. Simulation experiments on various datasets are conducted to demonstrate that BMPA is effective
and competitive with state-of-the-art budgeted online algorithms.

INDEX TERMS Budget, budgeted algorithm, online learning, online multiclass classification, relative
mistake bound, reproducing kernel Hilbert space, resource.

I. INTRODUCTION
Online learning aims to solve a sequence of prediction
tasks given knowledge of correct targets of previous tasks
[1]–[3]. On a task round, a prediction is made to the received
instance, and then an update of the prediction model based
on the correct target received later is performed to improve
prediction for future tasks. The goal of online learning is to
make accurate predictions for the sequence; as long as the
prediction model can be adapted to the sequence, it does
not matter if the model will converge or not. Because of its
adaptive nature, online learning is suited for many practical
applications that receive streaming data, such as real-time
malicious URL detection [4] and ad click-through rate
prediction [5].
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Numerous online algorithms have been proposed for the
online setting [6]–[11]. Most of the methods are focused on
the design of the update rule with a linear model. However,
this simple linearity may limit the prediction performance.
For a complex problem, a linear model may require the
company with a superior feature extraction to achieve a good
prediction performance.

Fortunately, the prevalence of support vector machines
inspires the application of kernels to online learning [12].
Since the nature of many online algorithms allows them-
selves to be kernelized easily, e.g., the Perceptron algorithm
[13] and the online gradient descent (OGD) algorithm [14],
a kernel-based model, which is a nonlinear model composed
of kernel functions, can usually be used to achieve a bet-
ter prediction performance. This kernel-based approach is
known as the kernel trick, which replaces all the inner prod-
ucts in an algorithm by kernel functions. While the kernel
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trick is simple yet effective, a kernelized online algorithm
needs to store support vectors and associated combination
weights together to represent a kernel-based model. It turns
out that the kernelized online algorithm suffers from the curse
of kernelization that results in unbounded growth in memory
usage and runtime for a task round as more and more tasks
are done [15]. It may make a kernelized online algorithm
broken-down on some resource-insufficient occasions, e.g.,
making predictions on smartphones with limited computa-
tional power.

Many researchers have tried to address this issue in binary
cases that deal with a sequence of binary classification tasks.
Most existing works are focused on controlling the growth
of a kernel-based model by restricting the number of sup-
port vectors [13], [14], [16]–[20]. Some works transform a
kernel-based model into a linear model with kernel-induced
feature approximation and thus avoid the growth [21], [22].
The same issue exists in multiclass cases that face a sequence
of multiclass classification tasks. Although a multiclass prob-
lem is generally more complicated than a binary problem,
several research works have attempted to cure the curse
by controlling the growth of a model [13], [23], or using
kernel-induced feature approximation [21], [22].

Among state-of-the-art online methods, a family of
margin-based online algorithms called passive-aggressive
(PA) algorithms has drawn lots of attention in recent years
[10]; the popularity is likely because it can be used to solve
many kinds of problems, such as classification, regression,
and structured prediction, and the formulation for the update
of a prediction model is simple and neat. The PA algorithms
have facilitated fruitful applications [4], [24]–[27] and have
inspired many subsequent online algorithms [28]–[32]. A PA
algorithm can be kernelized to make more accurate predic-
tions with a nonlinear model, but still suffers from the curse
of kernelization making it difficult to work in applications
provided with limited computational power. However, there
exist only a few research works focused on overcoming the
curse for PA algorithms applied to binary classification [20],
[33]. It is worth to study how to overcome this issue for
PA algorithms in various types of problems such as multi-
class classification and structured prediction; consequently,
kernel-based models can be applied safely in more and more
practical applications. Moreover, for PA-based online algo-
rithms, the study may shed some light on how to overcome
their curse.

In this paper, we attempt to break the curse of kernelization
for the multiclass classification version of the PA algorithm,
which is referred to as the multiclass PA (MPA) algorithm in
the rest of this paper. There are two main challenges of break-
ing the curse for the MPA algorithm. First, a kernel-based
prediction model for m-class classification (m > 2) consists
of m kernel-based hypotheses instead of only one hypothesis
for binary classification; thus, we should somehow simul-
taneously limit the growth of all hypotheses to control the
growth of the model. Second, since controlling the growth
of a model will result in some sacrifice in the prediction

performance, it is necessary to diminish the information loss
in the updated model to maintain the performance.

To tackle these challenges, we propose a new budgeted
method called the budgeted multiclass passive-aggressive
(BMPA) algorithm to control and update all the hypotheses of
a model at the same time. Concretely, we make the following
contributions in this paper.

1) To provide a solid explanation of the proposed
BMPA algorithm, we introduce the resource perspec-
tive that treats every encountered instance as a poten-
tial resource and the kernel-based MPA algorithm as
a manager exploiting available resources for simul-
taneously constructing all hypotheses of a prediction
model. It gives an alternative and equivalent interpreta-
tion of the kernel-based MPA algorithm.

2) Through the resource perspective, we propose the
BMPA algorithm that exploits only a finite number
of available resources to approximate the kernel-based
MPA algorithm. Specifically, the BMPA algorithm
employs a projection approach to diminish the infor-
mation loss in the updated model when there exists any
unaffordable resource.

3) We study three kinds of budget maintenance strategies
about how to select the unaffordable resource to remove
and suggest to use the smallest removal strategy that
removes the resource with the smallest magnitude of
the weights. The smallest removal strategy achieves
a good tradeoff between prediction performance and
runtime.

4) We justify the proposed BMPA algorithm and budget
maintenance strategies by providing a unified relative
mistake bound and conducting comprehensive empiri-
cal experiments on eight open datasets.

Deep learning (DL)-based classification methods, e.g.,
AlexNet [34], GoogLeNet [35], and ResNet [36], are
typically trained by backpropagation in a batch learning
setting, which requires the entire training data to be col-
lected before the learning task. Therefore, batch learning
is also called offline learning. Moreover, machine learning
(ML)-based classification methods, e.g., multiclass logis-
tic regression [37], multiclass Gaussian process classifica-
tion [38], andmulticlass SVMs [39], are also typically trained
in a batch learning setting. These types of DL-based or
ML-based methods aim to learn a fixed classification model
that achieves good generalization for new testing data. On the
other hand, the kernel-based MPA algorithm investigated in
this study is used to deal with a sequence of online and
real-time prediction tasks. Its goal is to make accurate predic-
tions for the sequence of input data and the real-time predic-
tion model can change dynamically. As long as the prediction
model can be adapted to the input sequence, it can support
the fixed or changing model. Because the kernel-based MPA
algorithm and DL-based (or ML-based) methods are devel-
oped for different prediction problem settings, we focus on
comparing the proposed BMPA algorithm with budgeted and
non-budgeted online multiclass algorithms in this paper.

VOLUME 8, 2020 227421



C.-H. Wu et al.: Budgeted PA Learning for Online Multiclass Classification

For those practical applications receiving streaming data,
the targets are often assumed to be generated from specific
target function or distribution. These applications may face
the problem of concept drift that results in the change of the
target function or distribution over time [40], [41]. On this
subject, there are methods proposed in literature to address
the adaptation of concept drift over time, e.g., adaptive ran-
dom forests [42], Kappa updated ensemble [43], and leverag-
ing bagging [44]. Moreover, with the unlearning framework
[45], the PA algorithm can be applied on these applications to
prevent degradation in the prediction performance. Similarly,
the MPA algorithm can be applied for multiclass classifi-
cation. In this paper, we focus on the development of the
budgeted online algorithm that makes the MPA algorithm
feasible given limited computational power.

The rest of the paper is organized as follows. We discuss
related work in Section II. Section III reviews the learn-
ing setting for the MPA algorithm and its kernelization.
In Section IV, we present the proposed BMPA algorithm and
study three budget maintenance strategies. Section V pro-
vides a unified theoretical analysis for the proposed method.
We conduct empirical experiments in Section VI and con-
clude the paper in Section VII.

II. RELATED WORK
In this section, we mainly discuss online classification prob-
lems in online learning. For a more comprehensive survey of
online learning, please refer to [46].

A. ONLINE LEARNING
Online classification can be further divided into two cases:
online binary classification for a sequence of binary clas-
sification tasks and online multiclass classification for a
sequence of multiclass classification tasks. Since the latter is
generally considered a more complicated problem, research
works are focused primarily on the former at first.

The well-known Perceptron algorithm is probably the very
first online algorithm for the binary case [6]. It performs a
simple additive update on the parameters of a linear model
whenever it makes a wrong prediction. Several theoreti-
cal studies suggest that the number of prediction mistakes
made by the Perceptron algorithm can be bounded from
above [8], [47], [48]. Crammer et al. [10] proposed the
passive-aggressive (PA) algorithm that utilizes the notion
of margin to update the linear model. If the margin of
the current example is smaller than a predefined value,
the PA algorithm updates the model so that the new model
achieves a unit margin on the current example by solving
a constrained optimization problem. Two variants of the PA
algorithm, which relax the constraints by trading off between
the model change and the desired margin, are also described
so that the existence of noise can be taken into considera-
tion, e.g., mislabeled examples. Relative loss bounds for all
three variants of the PA algorithm are derived. Due to the
prevalence of the PA algorithms, several subsequent works
are conducted. Confidence-weighted (CW) learning brings

uncertainty into the linear model [25], [28], [49]. The param-
eter confidence is modeled as a Gaussian distribution, and
the CW algorithm updates the distribution by solving a con-
strained optimization problem mimicking the PA algorithm.
Since the CW algorithm performs poorly on nonseparable
data and noisy data due to its aggressive update rules, soft
confidence-weighted (SCW) learning is proposed to alleviate
the situation by trading off between the distribution change
and the adaptive margin [29], [50]. Alternatively, adaptive
regularization of weights (AROW) employs an adaptive
regularization approach for each example according to its
confidence [30], [51].

Some researchers paid their attention to online multiclass
classification. Lots of efforts were put into how to cleverly
turn an online algorithm designed originally for a binary
problem to handle a multiclass problem. For example, Cram-
mer and Singer [52] proposed a family of additive ultra-
conservative algorithms, which generalized the Perceptron
algorithm to multiclass problems, and provided unified mis-
take bounds. Similarly, multiclass extensions for the PA, CW,
AROW, and SCW algorithms were developed cleverly one
after another [10], [31], [50], [51]. Based on themulticlass PA
algorithm, Matsushima et al. [32] further proposed the sup-
port class PA algorithm that resolves the constraint relaxation
through the idea of support classes.

B. KERNEL-BASED ONLINE LEARNING
With the kernel trick, an online algorithm can employ a
kernel-based model to achieve usually a better prediction
accuracy. However, it suffers from the curse of kerneliza-
tion that causes unbounded growth in memory usage and
runtime [15]; thus, several researchers have tried to address
this issue.

For binary problems, most works are focused on
controlling the growth of a kernel-based model by limit-
ing the number of support vectors (SVs). The budget Per-
ceptron algorithm proposed by Crammer et al. [16] is the
first algorithm to limit the number of SVs by a predefined
value, which is called the budget. Once the number of SVs
reaches the budget, it selects one of the SVs that meets
some rule and replaces it by the new instance. A similar
strategy is used in the NORMA algorithm [14] and the
tighter budget Perceptron algorithm [17]. Dekel et al. [18]
proposed the Forgetron algorithm that is the first algorithm
having a relative mistake bound derived on a budget. The
key ingredient making the theoretical analysis possible is
the repeated shrinking of the kernel-based model followed
by removing the oldest SV every time an update is per-
formed. Later, Cavallanti et al. [19] proposed the random-
ized budget Perceptron algorithm that chooses at random
an SV to remove and enjoys an expected mistake bound
similarly to the mistake bound of the Forgetron algorithm.
A merging approach was proposed to combine two SVs
into another new one [53]. Wang and Vucetic [20] pro-
posed the budgeted PA (BPA) algorithm that performs the
PA algorithm on a fixed budget through a constrained
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TABLE 1. Comparison between BMPA and BPA [20].

optimization problem. Based on the kernel-based Percep-
tron algorithm, Orabona et al. [13] proposed the Projectron
algorithm that takes a different route to control the growth of
a kernel-based model. It either includes the current instance
as an SV or projects the kernel of the instance onto the
subspace spanned by kernels centered on SVs if the projection
error is small enough. The number of SVs is guaranteed to
be bounded yet unknown, and a relative mistake bound is
derived. The authors also proposed an improved algorithm
called Projectron++ that considers the notion of margin.
Instead of focusing on the number of SVs, Lu et al. [22] pro-
posed a new framework that turns a kernel-based model into
a linear model with kernel-induced feature approximation.
Under this framework, they proposed two algorithms with
loss bounds based on the OGD algorithm. One is the Fourier
OGD algorithm that approximates shift-invariant kernels by
using random Fourier features, and the other is the Nyström
OGD algorithm that approximates the kernel matrix by using
the Nyström method.

In the literature, a few kernel-based methods have been
proposed for multiclass problems, which are more compli-
cated than binary problems. Orabona et al. [13] proposed
a multiclass version of the Projectron++ algorithm and
presented the relative mistake bound. However, the number
of SVs cannot be known in advance. It may result in the
broken-down problem when only a finite amount of com-
putational resources is usable. In [21] and [22], both the
Fourier OGD and Nyström OGD algorithms were extended
to multiclass problems. For the former, the resulting num-
bers of features should be large enough to approximate the
shift-kernel kernels well; for the latter, the matrix approxi-
mation rank should be larger to have a better classification
accuracy.

Finally, TABLE 1 summarizes the difference between our
proposed BMPA algorithm and the BPA algorithm [20] that
motivates our work in this paper. Firstly, BPA is designed
to tackle binary problems while BMPA aims for multi-
class problems. Secondly, BPA studies which subset of
SVs is selected for representing a removed SV and adopts
a fixed removal strategy that picks the SV minimizing a
regularized loss; BMPA always selects the entire set of
SVs for representing a removed SV and studies which SV
is selected for removal. Thirdly, as shown in FIGURE 1,
we introduce the resource perspective to give an equivalent
interpretation of the kernel-based MPA algorithm and pro-
vide a solid explanation of how BMPA approximates the
kernel-based MPA; however, BPA includes a budget con-
straint heuristically to limit the maximum number of SVs

FIGURE 1. A schematic of how BMPA approximates the kernel-based
MPA.

without any statement on the approximation. Lastly, BMPA
enjoys a relative mistake bound while there is no theoretical
support for BPA.

III. PROBLEM SETTING
We consider the problem of online multiclass classification,
which is to solve a sequence of multiclass classification tasks
given the knowledge of correct class labels of previous tasks.
On the t-th task round, the learner first receives an instance
xt ∈ X and predicts its class ŷt ∈ Y = {1, 2, . . . ,m}, m > 2,
based on some prediction rules. After receiving the correct
class label yt , the learner has to decide whether to update the
prediction rules such that future tasks may be done well with-
out the knowledge of future tasks. The goal is to make correct
predictions as many as possible for this sequence. In the rest
of this section, we review the multiclass passive-aggressive
(MPA) algorithm and its kernelization. The kernel-based
MPA algorithmwill serve as our basics to design the budgeted
algorithm that can be used in resource-insufficient occasions,
e.g., performing online multiclass classification on smart
devices with limited computational power.

A. MPA ALGORITHM
To tackle the problem of online multiclass classification,
MPA employs an m-class discriminant comprising m linear
hypotheses of the following inner product form [10],

f s(x) = ws · φ(x), ∀s ∈ Y, (1)

where Y = {1, 2, . . . ,m} is the set of m class labels and
φ : X → Rd represents feature extraction that transforms
instances to a desired feature space. f s : X → R measures
the score of class s for an instance and is parameterized by
the weight vector ws ∈ Rd . The process of MPA for a task
round can be summarized in four steps: scoring, prediction,
evaluation, and update.

On round t , MPA first computes the scores of all classes
after receiving the instance xt ,

f st (xt ) = wst · φ(xt ), ∀s ∈ Y, (2)

where f st (·) = wst · φ(·) measures the score of class s at round
t . Then, MPA predicts the class with the highest score

ŷt = argmax
s∈Y

f st (xt ). (3)

After receiving the true class label yt , the corresponding
prediction mistake can be determined by I (̂yt 6= yt) where
I(·) is an indicator function.
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Another popular way to evaluate the prediction is using the
hinge loss function, which is defined as

`
(
{f s}ms=1; (x, y)

)
= max{0, 1− [f y(x)− max

s∈Y,s 6=y
f s(x)]},

(4)

which penalizes the prediction if the margin of the discrimi-
nant, f y(x)−maxs∈Y,s6=y f s(x), is less than 1. At round t , MPA
evaluates the prediction of the discriminant parameterized
with {wst }

m
s=1 by computing the hinge loss

`
(
{wst }

m
s=1; (xt , yt )

)
=max{0, 1− [wytt · φ(xt )−w

st
t · φ(xt )]},

(5)

where st is the most misleading class on round t ,

st = argmax
s∈Y,s6=yt

f st (xt ). (6)

Instead of `
(
{f st }

m
s=1; (xt , yt )

)
, here we slightly abuse the

notation by using `
(
{wst }

m
s=1; (xt , yt )

)
since f st is parameter-

ized by wst .
At the end of round t , MPA solves the following con-

strained optimization problem for the updated determinant
parameterized by {wst+1}

m
s=1,

minimize
ws,s∈Y

1
2

m∑
s=1

‖ws − wst‖
2
2

subject to wyt · φ(xt )− wst · φ(xt ) ≥ 1, (7)

which requires the update to have minimum change while
only having to achieve enough score difference between the
correct class yt and themost misleading class st on the current
example (xt , yt ).1 Note that this optimization problem is a
relaxation because it considers only the single incorrect class
st instead of all incorrect classes [10]. According to (4),
it does not guarantee that the updated discriminant has zero
hinge loss on the current example. (7) has a closed-form
solution, and the resulting update rule is as follows

wst+1 = wst + α
s
tφ(xt ), ∀s ∈ Y, (8a)

αst = (δs,yt − δs,st )τt , (8b)

τt =
`
(
{wst }

m
s=1; (xt , yt )

)
2‖φ(xt )‖22

, (8c)

where δa,b is the Kronecker delta

δa,b =

{
1 if a = b,
0 if a 6= b.

(9)

This means only weight vectors of classes yt and st are
modified by adding or subtracting the scaled feature vector,
τtφ(xt ), if the prediction suffers nonzero hinge loss, otherwise
all weight vectors remain unchanged. It should be noted that
the update requires to explicitly compute the feature vector
φ(xt ) and thus the feature space is restricted to be finite-
dimensional.

1In this paper, we focus on the version without a slack variable.

B. KERNEL-BASED MPA ALGORITHM
Through the kernel trick, MPA can be kernelized to make
predictions with a kernel-based m-class discriminant. To see
this, we first represent the weight vector associated with the
class s on round t as a linear combination of feature vectors
of support elements (SEs) as follows

wst = wst−1 + α
s
t−1φ(xt−1)

=
(
wst−2 + α

s
t−2φ(xt−2)

)
+ αst−1φ(xt−1)

= . . .

=

∑
i∈It

αsiφ(xi), (10)

where ws1 is initialized as the zero vector for all classes and
It =

{
i ∈ N | i < t ∧maxs∈Y |αsi | 6= 0

}
is the support index

set which collects indices of SEs. In this paper, an instance
xi ∈ X used to construct a prediction model is called an
SE instead of a support vector because we suppose that xi
can be anything, e.g., a document of varied length, not just
a fixed-length vector. In literature, an SE is called a support
vector because it is a fixed-length vector.
The kernelization of MPA is to replace the inner product

on the feature space, φ(x) ·φ(x ′), by a kernel function k(x, x ′)
that implements the inner product implicitly,

k(x, x ′) = φ(x) · φ(x ′). (11)

Thus, we can represent all linear hypotheses of the m-class
discriminant on round t as kernel-based hypotheses simulta-
neously

f st (·) =
∑
i∈It

αsi k(xi, ·), ∀s ∈ Y, (12)

which implicitly carries out the feature extraction through the
kernel function k . Prediction of the class and evaluation of
the hinge loss are computed by (3) and (4) using (12) and the
current example (xt , yt ). The update rule of the kernel-based
MPA is re-organized as follows (cf. (8a)–(8c))

f st+1(·) = f st (·)+ α
s
t k(xt , ·),∀s ∈ Y, (13a)

αst = (δs,yt − δs,st )τt , (13b)

τt =
`
(
{f st }

m
s=1; (xt , yt )

)
2k(xt , xt )

. (13c)

Since the kernel-based MPA has to store and use all SEs
and the associated combination weights, the computational
burden on a single round, in terms of memory usage and
runtime, may grow unboundedly as more and more rounds
are done. This problem is called the curse of kernelization
and demands a resource-efficient algorithm if we need the
kernel-based MPA workable in practical applications, espe-
cially in resource-insufficient occasions. To solve the curse of
kernelization, we propose the budgeted algorithm that limits
the number of SEs in use and fully exploit them through a
constrained optimization.
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IV. KERNEL-BASED MPA ON A FIXED BUDGET
In this section, we first introduce the resource perspec-
tive for the kernel-based MPA, and then propose the bud-
geted MPA (BMPA) algorithm based on this perspective.
Finally, we study three SE removal strategies for the budget
maintenance.

Since them-class discriminant adopted by the kernel-based
MPA consists of m kernel-based hypotheses, we consider
that hypotheses of an m-class discriminant are selected from
the reproducing kernel Hilbert space (RKHS) H of a kernel
k : X × X → R [54]. H is a Hilbert space of real-valued
functions f : X → R endowed with an inner product 〈·, ·〉H
such that it satisfies (1) k(x, ·) ∈ H,∀x ∈ X , and (2) the
reproducing property, 〈f , k(x, ·)〉H = f (x),∀x ∈ X ,∀f ∈ H.
The inner product 〈·, ·〉H induces a norm on H such that

‖f ‖H = 〈f , f 〉
1
2
H,∀f ∈ H.

A. RESOURCE PERSPECTIVE
According to (12), the kernel-basedMPA employs anm-class
discriminant comprising of m kernel-based hypotheses. All
kernel-based hypotheses on round t are linear combinations
of kernels centered on the same set of SEs corresponding
to It . However, (13a)–(13c) suggest that the update of the
kernnel-based MPA includes the current instance xt as a new
SE and only adjusts its combination weights; all weights
corresponding to the other SEs stay the same. It implies if we
can somehow adjust weights of all available SEs including xt
and get a update rule different from that of the kernel-based
MPA.

Now, we introduce the resource perspective of a
kernel-based online algorithm that treats every encountered
instance xi as a potential resource that may be included as an
SE or removed in the online learning process. On round t ,
SEs are treated as available resources used to construct the
prediction model, and the corresponding weights are treated
as the degrees of utilization of the SEs. During the update
step, the learner first selects which instances to store as avail-
able resources (i.e., SEs) for prediction on the next round and
determines their degrees of utilization; instances that are not
stored as SEs are treated as unavailable resources which are
removed and cannot be used on later rounds. The remaining
question is whether we can get a different update rule by
using the resource perspective and following the update idea
ofMPA,which asks for theminimum change in the prediction
model while achieving enough score difference.

Let us start from the prediction model used by the resource
perspective. Assume hypotheses of the m-calss discriminant
on round t are some linear combinations of kernels centered
on the same set of some SEs,

f̃ st =
∑
i∈Ĩt

α̃si k(xi, ·), ∀s ∈ Y, (14)

where Ĩt is the support index set which collects correspond-
ing indices of SEs. We use the symbol ∼ to emphasize that

even with the same sequence of tasks (14) and (12) may be
different in SEs and the combination weights.

Prediction of the class and evaluation of the hinge loss are
computed by (3) and (4) using (14) and the current example
(xt , yt ). If the hinge loss is zero, we keep the same hypotheses
for the next round,

f̃ st+1 = f̃ st , ∀s ∈ Y. (15)

In case the discriminant suffers nonzero hinge loss,
i.e., `({̃f st }

m
s=1; (xt , yt )) > 0, without any constraint on

the number of resources the resource perspective suggests
to select all available instances including xt as available
resources for prediction on the next round. In other words,
we seek for new hypotheses that are some linear combinations
of kernels centered on the new set of SEs,

f̃ s =
∑
i∈Ĩt+1

asi k(xi, ·), ∀s ∈ Y, (16)

where Ĩt+1 = Ĩt ∪ {t} is the new support index set. It leaves
us to determine the degrees of utilization asi ’s.
Then, we follow the update idea of MPA: the degrees

of utilization for the next round should result in minimum
change in the update of the prediction model while achieving
enough score difference on the current example (xt , yt ),

minimize
asi ,∀i,∀s

1
2

m∑
s=1

∥∥̃f s − f̃ st ∥∥2H
subject to f̃ yt (xt )− f̃ s̃t (xt ) ≥ 1, (17)

where s̃t = argmaxs∈Y,s6=yt f̃
s
t (xt ) is the most misleading

class determined by using (14) and (xt , yt ). Substituting the
solution of (17) back into (16), wewill get the new hypotheses
{̃f st+1}

m
s=1 for the next round. Note that (17) is different from

(7) because we solve for the degrees of utilization of available
resources in (17) instead of the weight vectors in (7).

Somewhat surprisingly, the resource perspective combin-
ing with the update idea of MPA turns out to have the same
update rule with the kernel-based MPA. Moreover, if we
set the same initialization for both approaches, we will get
the same prediction results for the entire sequence of tasks.
We state this result formally by the following proposition.
Proposition 1: Assume all Gram matrices of encountered

instances in the RKHS H of a kernel k are strictly positive
definite. Let the resource perspective combining the update
idea of MPA adopt the following setting.

1) Initialize the hypotheses of the m-class discriminant to
zero, i.e., f̃ s1 = 0,∀s ∈ Y .

2) Predict the class with the highest score on round t,

ŷt = argmax
s∈Y

f̃ st (xt ). (18)

3) Update the hypotheses for round t + 1 by solving
(17) when the hinge loss is positive, otherwise update
by (15).
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This setting follows the same prediction path made by the
kernel-based MPA, that is, for t = 1, 2, . . .,

f̃ st = f st =
∑
i∈It

αsi k(xi, ·), ∀s ∈ Y, (19)

where {f st }
m
s=1 are the hypotheses employed by the

kernel-based MPA on round t.
We give the proof in the Appendix. Although the resource

perspective starts from a different viewpoint, Proposition 1
guarantees that the kernel-based MPA and the resource per-
spective considering the degrees of utilization of available
resources employ the same sequence ofm-class discriminants
to make predictions. In other words, the resource perspective
provides an alternative and equivalent interpretation for the
kernel-based MPA. This bring us to the proposed BMPA
algorithm that approximates the kernel-based MPA when a
limited number of resources is available.

B. BUDGETED MULTICLASS PASSIVE-AGGRESSIVE
(BMPA) ALGORITHM
As described in Section III-B, the kernel-based MPA suffers
from the curse of kernelization. Fortunately, Proposition 1
suggests that we can approximate the kernel-based MPA
based on the re-interpretation from the resource perspective.
Therefore, based on the resource perspective, we propose the
BMPA algorithm to limit the number of available resources
used to construct the kernel-based hypotheses of an m-class
discriminant by a predefined number B, called the budget.
In practical applications, the budget B can be easily defined in
advance by considering the available computing power. Note
that a single budget B can be used to control the growth of the
prediction model by simultaneously controlling the growth of
all kernel-based hypotheses.

To be more clear about how to use the budget B with the
resource perspective, again we assume hypotheses on round
t are some linear combinations of kernels centered on some
SEs,

f st =
∑
i∈It

αsi k(xi, ·), ∀s ∈ Y, (20)

where It is the corresponding support index set. From now on
we simplify the notations by neclecting the symbol ∼. If on
round t the hinge loss is zero or the number of SEs is less
than the budget B, the proposed BMPA algorithm performs
the update exactly like what the kernel-based MPA does in
(13a)–(13c). We call this kind of update the MPA update.
Otherwise, we have to deal with the case that the discriminant
suffers nonzero hinge loss and the number of SEs reaches
the budget, i.e., |It | = B. BMPA will remove one of current
SEs and set the remaining SEs and the current instance xt as
available resources for prediction on the next round. In other
words, BMPA seeks for new hypotheses that are some linear
combinations of kernels centered on the set of only B SEs,

f s =
∑
j∈It+1

asj k(xj, ·), ∀s ∈ Y, (21)

where It+1 = (It\{r}) ∪ {t} corresponds to the B available
SEs and r ∈ It is the index of the removed SE. Then, BMPA
determines the degrees of utilization for the next round by
solving (17) with (20) and (21). We call this type of update
the BMPA update and state it specifically by the following
proposition.
Proposition 2: Assume all Gram matrices of encountered

instances in the RKHS H of a kernel k are strictly positive
definite. If on round t the discriminant suffers nonzero hinge
loss and reaches the budget, |It | = B, BMPA updates the
hypotheses as follows

f st+1 = f st − α
s
rk(xr , ·)+

∑
j∈It+1

βsj k(xj, ·), ∀s ∈ Y, (22a)

βs = αsrK
−1
r kr +

[
0B−1

(δs,yt − δs,st )τt

]
, (22b)

τt =
`({f st }

m
s=1; (xt , yt ))

2k(xt , xt )
, (22c)

where r ∈ It , It+1 = (It\{r}) ∪ {t}, βs = [βsj ], j ∈ It+1,
kab = k(xa, xb), a, b ∈ N, K r = [kij], i, j ∈ It+1, and
kr = [kjr ], j ∈ It+1. 0B−1 is (B − 1)-dimensional vector of
zeros.
The proof is given in the Appendix. It is worth to note that

(22a) of the BMPA update can be decomposed into two parts
as follows

f st+1 = (f st + (δs,yt − δs,st )τtk(xt , ·)) (23a)

+ > (−αsrk(xr , ·)+ Pt [αsrk(xr , ·)]), (23b)

where Pt [f ] is the orthogonal projection of f onto the sub-
space span({k(xj, ·) | j ∈ It+1}). The first part (23a)
can be interpreted as an MPA update (cf. (13a)–(13c))
and the second part (23b) corresponds to the projection of
the removed SE xr . Although in this subsection we start
from removing xr and then determine the degrees of uti-
lization of B available SEs, (23a)–(23b) suggest that the
BMPA update can be interpreted in another way: the BMPA
update first performs the MPA update and then remove
the unaffordable resource xr by projection. The projection
Pt [αsrk(xr , ·)] preserves the information of xr , so it minimizes
the information loss in the prediction model when xr is
removed. We summarize the proposed BMPA algorithm in
Algorithm 1.

C. BUDGET MAINTENANCE
Although the proposed BMPA algorithm requests that the
index of the removed SE on round t should be selected from
current support index set It without any other specific rule,
in practice the determination of the removed SE plays an
important role. In this subsection, we study three removal
strategies for the budget maintenance.

1) OLDEST REMOVAL (BMPA-O) [55]
Since online multiclass classification deals with multiclass
classification tasks one after another, adjacent tasks may
usually be more relevant that those far apart. In other words,
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Algorithm 1 BMPA Algorithm
1: Input: budget B, kernel k
2: Initialize: I1 = ∅, hypotheses f s1 = 0,∀s ∈ Y
3: for t = 1, 2, . . . do
4: Receive an instance xt
5: Predict the class label ŷt = argmax s∈Y f st (xt )
6: Receive the correct class label yt
7: Compute the hinge loss `t = `({f st }

m
s=1; (xt , yt ))

8: if `t = 0 then FMPA update
9: It+1 = It
10: f st+1 = f st ,∀s ∈ Y
11: else if |It | < B then FMPA update
12: It+1 = It ∪ {t}
13: Compute τt =

`t
2k(xt ,xt )

14: f st+1 = f st + (δs,yt − δs,st )τtk(xt , ·),∀s ∈ Y
15: else F BMPA update
16: Determine the removed index r = rt ∈ It
17: It+1 = (It\{r}) ∪ {t}
18: Update f st+1 by (22a)–(22c)
19: end if
20: end for

older tasks may contain less information to make accurate
predictions for future tasks. This means the oldest SE may
contain the least information for future predictions. It sug-
gests removing the oldest SE to maintain the budget,

rt = min It , (24)

which is the smallest element in It .
The main computational burden of BMPA is located at the

case where a BMPA update is required. The time complexity
of BMPA-O is dominated by the computation of the matrix
inverse K−1rt . Computing K−1rt directly from K rt will take
O(B3) time and is not efficient. Instead, we use a recursive
approach to compute the matrix inverse by exploiting the
decremental and incremental natures of the Gram matrix.
We compute K−1rt from the previous matrix inverse K−1rt−1 in
O(B2) time by two recursive updates: the first one corre-
sponds to shrink the matrix size to (B− 1)× (B− 1) and then
the latter one is to enlarge the size back to B×B. Each recur-
sive update takes O(B2) time, and therefore the total time
complexity of BMPA-O is reduced to O(B2). On the other
hand, the space complexity of BMPA-O isO(B2) because we
need to store the matrix inverse, which dominates the main
memory cost.

2) PROJECTION REMOVAL (BMPA-P)
Since a BMPA update can be interpreted as an MPA update
followed by a projection contributed from the removed SE
xr (cf. (23a)–(23b)), a smaller total projection error leads to
less information loss in the prediction model. Note that the
magnitude of the total projection error on round t has an

analytic form,

m∑
s=1

∥∥αsrk(xr , ·)− Pt [αsrk(xr , ·)]
∥∥2
H

=

(
krr − k>r K

−1
r kr

) m∑
s=1

(αsr )
2. (25)

Hence, it suggests removing the SE with the least amount of
the total projection error on each round,

rt = argmin
q∈It

(
kqq − k>q K

−1
q kq

) m∑
s=1

(αsq)
2. (26)

The time complexity of BMPA-P is dominated by the com-
putation of the matrix inverseK−1q . Moreover, to determine rt
it needs to compute K−1q for every q ∈ It . Again, we exploit
the decremental and incremental natures of the Gram matrix
to compute the matrix inverse. Each K−1q is computed from
K−1rt−1 inO(B2) time by two recursive updates that are used by
BMPA-O. Therefore, the total time complexity of BMPA-P is
O(B3). On the other hand, the space complexity of BMPA-P
isO(B2) because the storage of K−1rt−1 and K

−1
q dominates the

main memory cost.

3) SMALLEST REMOVAL (BMPA-S)
If the weight associated with some SE is far from zero, e.g.,
|αsj | � 0 for some class s, the score of class s may change
dramatically because of the removal of the associated SE, xj.
Thus, it may degrade the prediction accuracy. If the weights
associated with some SE are almost zero, e.g., αsj ≈ 0,
∀s ∈ Y , we can safely remove the associated SE, xj, without
changing the scores of all classes and the prediction accuracy
too much. It implies that the weights associated with the SEs
may contain the important information for future predictions.
This suggests removing the SE with the smallest sum of
squared weights,

rt = argmin
q∈It

m∑
s=1

(αsq)
2. (27)

It is worth noting that BMPA-P becomes BMPA-S if(
kqq − k>q K

−1
q kq

)
is assumed to be a constant value for all

choices of SEs in It . It means BMPA-S can be treated as an
approximation of BMPA-P.

Compared with BMPA-O, BMPA-S only needs to addi-
tionally compute

∑m
s=1(α

s
q)

2 for all choices of SEs in It . The
time and space complexities of BMPA-S are still dominated
by the matrix inverse K−1rt . Hence, the time and space com-
plexities of BMPA-S are the same as those of BMPA-O, both
of which are O(B2).
Remark: These removal strategies are feasible plans to

remove less important SEs and keep more important SEs for
the proposed BMPA algorithm. These strategies are intro-
duced based on the resource perspective proposed in this
study.
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V. THEORETICAL ANALYSIS
In this section, we give a theoretical analysis of the proposed
BMPA algorithm. Specifically, we provide a unified relative
mistake bound that is applicable to any SE removal strategy
as long as the removed SE is selected properly, i.e., rt ∈ It ,
and then conduct an empirical study of the theoretical bound
on all three removal strategies studied in Section IV-C.

Let us first re-present the proposed BMPA algorithm.
As long as the hinge loss is zero or the number of SEs is
less than the budget B, BMPA performs the MPA update.
The number of SEs therefore grows with every nonzero hinge
loss and eventually reaches the budget B. Once the number
of SEs reaches the budget B and the discriminant suffers
nonzero hinge loss, BMPA first adds an SE by performing
the MPA update, and then it reduces the number of SEs to B
by projecting the kernel centered on the removed SE onto the
subspace spanned by the kernels centered on the new set of
SEs, i.e., span({k(xj, ·) | j ∈ It+1}).

Let hypotheses of the m-class discriminant on round t be

f st =
∑
i∈It

αsi,tk(xi, ·), ∀s ∈ Y, (28)

where It = {i ∈ N | i < t ∧ maxs∈Y |αsi,t | 6= 0} is
the support index set and st = argmaxs∈Y,s6=yt f

s
t (xt ) is the

most misleading class. Note that the combination weights are
denoted by αsi,t ’s instead of αsi ’s because their values may
change when the hypotheses are updated. Denote by I t the
index set obtained on round t after applying the MPA update,
that is,

I t =
{
It if `({f st }

m
s=1; (xt , yt )) = 0,

It ∪ {t} if `({f st }
m
s=1; (xt , yt )) > 0.

(29)

Let {f
s
t }
m
s=1 denote the corresponding set of hypotheses,

f
s
t = f st + α

s
t,tk(xt , ·), ∀s ∈ Y, (30)

where αst,t = (δs,yt − δs,st )τt and τt =
`({f st }

m
s=1;(xt ,yt ))

2k(xt ,xt )
. Now,

define It+1 to be

It+1 =
{
I t if

∣∣I t ∣∣ ≤ B,
I t\{rt } if

∣∣I t ∣∣ = B+ 1,
(31)

where rt ∈ It is the index of the removed SE. Note that as
long as rt is selected from It , it does not affect the analysis.
Then, the corresponding hypotheses {f st+1}

m
s=1 are

f st+1 =

{
f
s
t if

∣∣I t ∣∣ ≤ B,
f
s
t −1f

s
t if

∣∣I t ∣∣ = B+ 1
(32)

with the corresponding projection errors

1f st = α
s
rt ,tk(xrt , ·)− Pt [αsrt ,tk(xrt , ·)], (33)

where Pt [f ] is the orthogonal projection of f onto the sub-
space span({k(xj, ·) | j ∈ It+1}). Denote by T the number
of rounds in the sequence and by J the set of rounds on
which the discriminant suffers nonzero hinge loss, namely,
J = {t ∈ N | t ≤ T ∧ `({f st }

m
s=1; (xt , yt )) > 0}. Note that

IT+1 is a subset of J . Now, we are ready to present the relative
mistake bound for BMPA.
Theorem 1: Let H be the RKHS of a kernel k : X ×

X → R and (x1, y1), (x2, y2), . . . , (xT , yT ) be a sequence of
examples where xt ∈ X , yt ∈ Y = {1, 2, . . . ,m},m > 2, and
k(xt , xt ) = R2,R > 0, for all t. Then, for any competing m-
class discriminant comprising m hypotheses gs ∈ H, s ∈ Y ,
the number of prediction mistakes made by BMPA on this
sequence is bounded above by(
R

√
2
∑m

s=1
‖gs‖2H + 2

√∑T

t=1

[
`({gs}ms=1; (xt , yt ))

]2
+2R

√(∑m

s=1
‖gs‖2H

) 1
2
∑

t∈J :|It |=B

(∑m

s=1

∥∥1f st ∥∥2H) 1
2

2

.

(34)
We give the proof in the Appendix. This bound is an upper

bound measuring the prediction performance of BMPA rel-
atively to any competing m-class discriminant comprising m
hypotheses selected from the RKHSH of a kernel k . As long
as rt is selected from It , the analysis is applicable no matter
what removal strategy is executed when the budget is full.

The bound mainly consists of three terms. The first term
measures the size of the competing discriminant, the second
term evaluates the prediction performance of the competing
discriminant applied to the entire sequence, and the third
term assesses the influence of the projection errors performed
by the proposed BMPA algorithm as well as the size of the
competing discriminant. If either the budget is not reached,
i.e., |It | < B, or there is no budget constraint at all, i.e.,
B = ∞, BMPA always performs the MPA updates. 1f st ’s
become zero, and the theorem states the same mistake bound
for the kernel-based MPA [10]. If the budget of BMPA is
finite and reached, BMPA performs the BMPA update to
remove an SE for every nonzero hinge loss. The effect of SE
removal contributes to the projection errors in the third term
of the mistake bound and thus makes the bound less tight.

Since the competingm-class discriminant can be chosen in
hindsight from the RKHS of the kernel k , one typical choice
to gain some insight is to choose the m fixed hypotheses
that achieve the best prediction performance for the entire
sequence of examples. In this case, the second term has
the least influence on the bound and the effect of the first
term diminishes gradually.Moreover, the third term involving
projection errors dominates the mistake bound. This suggests
that the removal strategy plays an important role for deter-
mining the prediction performance of BMPA.

It is worth to note that we can take one step of the proof
back and have a relative loss bound for BMPA, although the
theorem states the relative mistake bound. The loss bound is
the same as the mistake bound as suggested by the last line of
the proof in the Appendix.

In literature, there are a few online algorithms that break
the curse of kernelization for multiclass problems and have
theoretical analyses. The Projectron++ algorithm enjoys a
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FIGURE 2. Empirical study of the relative mistake bound on the usps dataset. (a)–(c) are
conducted with B = 100. {gs}ms=1 are chosen such that they minimize the cumulative
squared hinge loss of the sequence of T examples. The rate of individual term is defined
in the context.

relative mistake bound controlled by a sparseness parameter
η [13]; however, the MFOGD and MNOGD algorithms have
regret bounds that are fallen in a slightly different realm [22].
Remark 1: Examples of kernels satisfying the condition are

the Gaussian kernel k(x, x′) = exp(−γ ‖x − x′‖22) and the
exponential kernel k(x, x′) = exp(−γ ‖x−x′‖2) where γ > 0
and x, x′ ∈ X ⊆ Rd [38]. Note that R = 1 for both examples.
Remark 2: Intuitively, BMPA-P attempts to reduce the total

projection errors in a greedy way on each round. As the impli-
cation from the theoretical analysis, BMPA-P may achieve a
bound tighter than BMPA-O and BMPA-S.

A. EMPIRICAL STUDY OF THE THEORETICAL BOUND
Because the mistake bound described in Theorem 1 is
obtained by using inequalities in several times, it is by no
means tight. However, we still can gain some insights through
the following empirical study in which only the usps dataset
is used to illustrate the results. The other datasets have similar
tendencies as that demonstrated with the usps dataset. Unless
specifically mentioned, we follow the same experimental
setting described in Section VI. Them competing hypotheses
{gs}ms=1 are chosen such that they minimize the cumulative
squared hinge loss of the sequence of T examples.
FIGURE 2 demonstrates the results of three removal strate-

gies described in Section IV-C as well as the kernel-based
MPA algorithm, which is abbreviated as MPA. We set
B = 100 for FIGURE 2(a)–2(c). FIGURE 2(a) depicts the
cumulative mistake rate and FIGURE 2(b) shows the rate of
mistake bound, which is the mistake bound divided by the

number of examples. We also plot curves of FIGURE 2(a) to
FIGURE 2(b): they cannot be distinguished visually and are
very close to the horizontal axis. Although FIGURE 2(b)
shows that the mistake bounds are not tight at all, the bounds
indeed show a relationship same as that of the cumulative
mistake rates: BMPA-O > BMPA-P ≈ BMPA-S > MPA.
To see the interaction of three terms shown in the mistake
bound, we compare in FIGURE 2(c) the rate of individual
term, which is the square-root term divided by the square root
of the number of examples. To be more specific, we define,
after round t ′:

rate of Term 1

=

R

√√√√2
m∑
s=1

‖gs‖2H

√
t ′

, (35a)

rate of Term 2

=

2

√√√√ t ′∑
t=1

[
`({gs}ms=1; (xt , yt ))

]2
√
t ′

, (35b)

rate of Term 3

=

2R

√√√√√( m∑
s=1

‖gs‖2H

) 1
2 ∑
t∈J ′:|It |=B

(
m∑
s=1

∥∥1f st ∥∥2H
) 1

2

√
t ′

, (35c)
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TABLE 2. Detailed information of datasets (X ⊆ Rd ).

where J ′ = {t ∈ N | t ≤ t ′ ∧ `({f st }
m
s=1; (xt , yt )) > 0}

records rounds with nonzero hinge loss so far. FIGURE 2(c)
shows that the first term diminishes gradually, the second
term has the least influence, and the third term dominates the
bound. This confirms our previous claim and suggests that the
removal strategy is important in determining the prediction
performance. Lastly, FIGURE 2(d) verifies that the relation-
ship remain among different budgets (cf. FIGURE 4(e)).
Remark: Intuitively, if we can make the mistake bound

tighter, the number of prediction mistakes may be fewer.
Since a BMPA update consists of an MPA update and a
projection contributed by the removed SE, the corresponding
projection error contributes to the third term of the mistake
bound and thus make the bound less tight. This suggests us
to find a way to minimize the total projection error term

in the bound,
∑

t∈J :|It |=B

(∑m
s=1

∥∥1f st ∥∥2H) 1
2
, to have the

tightest bound. The tightest bound can be achieved only if
we can access the whole sequence of examples at one time;
it contradicts to the nature of online multiclass classification
because we cannot anticipate what future tasks are when
we deal with the current task. Therefore, BMPA-P serves as
a turnaround to make the bound tighter by minimizing the
mistake bound so far. The results in Section VI-B show that
BMPA-P achieves the best prediction performance among
the three removal strategies studied in this paper. However,
in practical applications, we may take the execution time into
account. This suggests that BMPA-S is better employed for
practical applications (cf. FIGURE 5).

VI. EXPERIMENTS
We conduct experiments to demonstrate the effectiveness of
the proposed BMPA algorithm. Overall, there are three goals
to achieve through the experimental results. Firstly, we vali-
date that BMPA indeed approximates the kernel-based MPA
algorithm, which is abbreviated as MPA in this section. Sec-
ondly, different removal strategies of BMPA are compared.
Finally, we show that BMPA is competitive with state-of-
the-art budget online algorithms.

Table 2 summarizes the detailed information of datasets
used in the experiments. All of them can be downloaded
from the LIBSVM website. X ⊆ Rd is adopted since
examples in a dataset are of the fixed-length vector form
of d dimensions. For each dataset, we generate 20 different
sequences by using random permutation of all T examples

in the dataset; cumulative mistake rate and elapsed time
are evaluated. All the results are obtained by averaging
over the 20 sequences for all experiments. All tested algo-
rithms are kernel-based methods with the Gaussian kernel
k(x, x′) = exp

(
−γ ‖x− x′‖22

)
where the parameter γ is

selected from {2−10, 2−8, . . . , 210}. To have a fair compari-
son, we use themulticlass version of the Perceptron algorithm
with max-score update (abbreviated as MPerceptron) [52] to
determine the value of γ . The determination rule is similar
to that used in [13]. Specifically, for each dataset, the param-
eter γ is selected to have the smallest average cumulative
mistake rate with MPerceptron and is used for all the other
algorithms. All algorithms are implemented in MATLAB
and simulated by MATLAB R2017a in a personal computer
equipped with 16GB RAM and Intel Core i7-4790 CPU at
3.6GHz. The operating system isWindows 7 Professional 64-
bit. For the elapsed timemeasured in Section VI-B, we enable
single-thread processing.
Remark: The kernel-based PA algorithm suffers from the

curse of kernelization that may fail to work when t is very
large, and is remedied by BPA as demonstrated with a
large-scale dataset of one million examples in the exper-
iments section of [20]. The kernel-based MPA algorithm,
which is the multiclass extension of the kernel-based PA
algorithm, also suffers from the curse of kernelization and is
fixed by the proposed BMPA algorithm. Thus, BMPA can be
treated as the multiclass extension of BPA. So, BMPA has the
same space complexity and m times of the time complexity
in comparison with BPA. Both time and space complexities
are constant once the budget B is set. Therefore, BMPA is
feasible for large-scale datasets.

A. APPROXIMATION OF MPA
We use the oldest removal strategy to verify the approxima-
tion; however, the observations are also applicable to the other
strategies. FIGURE 3 demonstrates the cumulative mistake
rate as a function of the number of examples for MPA and
BMPA-O. To properly invoke BMPA updates of BMPA-O,
the values of budgets are carefully chosen to be much smaller
than the average number of total SEs for MPA. For each
dataset, the average is taken over the 20 sequences; for each
sequence, we record the number of total SEs used by MPA
after receiving all T examples.We also include BMPA-Owith
the budget equal to the average of MPA.

The mistake rate of MPA drops when the number of exam-
ples increases and is almost always the lowest as compared
with BMPA-O. Themistake rate of BMPA-O at the beginning
is the same as that of MPA since the number of SEs at that
time is smaller than the predefined budget. When later the
number of SEs reaches the budget, the drop of the mistake
rate becomes slower. Moreover, the curve of BMPA-O with
a larger budget is lower and is much closer to that of MPA.
Eventually, BMPA-O and MPA are not distinguishing if the
budget is large enough. We also plot the mistake rate versus
the budget for BMPA-O in FIGURE 4. It is evident that

227430 VOLUME 8, 2020



C.-H. Wu et al.: Budgeted PA Learning for Online Multiclass Classification

FIGURE 3. The cumulative mistake rate versus the number of examples for MPA and BMPA-O. The average number of total SEs used by MPA is
provided for each individual dataset. To properly invoke BMPA updates of BMPA-O, the values of budgets are set to be much smaller than the average
of MPA. BMPA-O with the budget equal to the average of MPA is also included for comparison.

the mistake rate converges gradually to that of MPA with
the increase of the budget. We conclude that BMPA is an
approximation of MPA.

B. REMOVAL STRATEGIES
Because the removal strategy plays a central role in practice,
here we compare the performance of the three proposed
strategies. FIGURE 4 depicts the cumulative mistake rate as
a function of the budget B for MPA and BMPA. Since there
is no SE removal in MPA, its mistake rate is plotted as a
horizontal dash-dotted line. It is clear that the mistake rate for
all strategies converges gradually, at a different pace, to that
of MPA as the budget increases. This result supports our

claim that BMPA is an approximation of MPA. As expected
from the relativemistake bound, BMPA-P has almost the low-
est mistake rate among three proposed strategies. Moreover,
BMPA-S has a slightly worse or similar performance as com-
pared with BMPA-P. This somehow justifies that BMPA-S
approximates BMPA-P.

We also plot in FIGURE 5 the elapsed time as a function
of the mistake rate for MPA and BMPA. FIGURE 5 shows
that all three removal strategies trade the mistake rate for the
elapsed time. Among them, BMPA-S achieves the best trade-
off, and the gap in the elapsed time is more tremendous on a
lowermistake rate. Furthermore, BMPA runsmore efficiently
for sequences with a large number of examples and high
dimensions, e.g., protein andmnist. We can observe that their
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FIGURE 4. The cumulative mistake rate versus the budget for MPA and BMPA with different removal strategies. The dotted horizontal line
corresponding to MPA is provided as the baseline for comparison.

curves of BMPA are mostly located at the bottom-right region
with respect to MPA.

C. COMPETITIVENESS
We take BMPA-S, which acheves the best trade-off in
Section VI-B, as the representative of BMPA and com-
pare it with the following state-of-the-art budgeted online
algorithms:

• MRBP: the multiclass randomized budget Perceptron
algorithm with random removal strategy [13], [19];

• MProjectron++: the multiclass Projectron++ algo-
rithm using the projection strategy [19];

• MFOGD: the multiclass Fourier online gradient descent
algorithm using random Fourier features [22];

• MNOGD: the multiclass Nyström online gradient
descent algorithm using Nyström-based features [22].

The above algorithms are essentially designed for online
multiclass classification. MRBP represents the multiclass
extension of the randomized budget Perceptron algorithm
in the nature manner [13], [19]. In particular the max-score
update is used. MRBP discards an SE at random from the
current set of SEs when the number of SEs reaches the budget
and includes the current example as a new SE. Since the dis-
carding of MRBP involves a randomized mechanism, we run
it ten times and then take the average for each sequence.
To have a more fair comparison to MRBP, we also implement
BMPA with random removal (abbreviated as BMPA-R) that
selects an SE to remove at random. MProjectron++ is the
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FIGURE 5. The elapsed time versus the cumulative mistake rate for MPA and BMPA with different removal strategies. The cross marker corresponding
to MPA is provided as the baseline for comparison.

TABLE 3. Property comparison of of budgeted online algorithms.

multiclass extension of the Projectron++ algorithm [13].
MProjectron++ adopts a projection approach to bound the
number of SEs; basically, it projects the kernel centered
on the current instance to the subspace spanned by ker-
nels centered on SEs under proper conditions involving a

sparseness parameter η. If the number of SEs reaches the
predifined budget, the projection is always executed regard-
less of the conditions. For each budget, η is selected from
{0.2, 0.4. . . . , 1.4} and is set to the value attaining the lowest
mistake rate. MFOGD approximates shift-invariant kernels
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FIGURE 6. The cumulative mistake rate versus the budget for budgeted and non-budgeted online multiclass algorithms. The two dotted horizontal
lines corresponding to MPerceptron and MPA respectively are provided as baselines for comparison.

by using random Fourier features and learns the correspond-
ing linear hypotheses by the online gradient descent algo-
rithm [22]. MNOGD approximates the kernel matrix by using
the Nyström method and learns the corresponding linear
hypotheses by the online gradient descent algorithm [22].
Following the parameter recommendation in [22], we set the
number of Fourier components as 6B for MFOGD and the
rank approximation parameter as 0.4B for MNOGD. The
gradient descent step size η for both algorithms is drawn ran-
domly from {2, 0.2, . . . , 0.0002}. MFOGD is run ten times
for each sequence due to the random features.We also include
MPerceptron and MPA for comparison. Both algorithms
make use of the kernel trick and belong to non-budgeted
methods.

As a summary, we summarize the properties of these bud-
geted online algorithms in TABLE 3. The second column
indicates what algorithm prototype they adopt, and the third
column records the form of the employed hypotheses. Among
the last three columns that are related to SEs, the first one
indicates the adoption of a removal strategy, the second one
records how the removed SE is selected, and the third one
describes how to preserve the information of the removed SE.
It is worth to note that both MFOGD and MNOGD do not
remove any SE and transform every SE into kernel-induced
feature vectors.

FIGURE 6 depicts the cumulative mistake rate as a func-
tion of the budget B for budgeted online algorithms as well
as non-budgeted methods. From the curves, we can draw
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TABLE 4. Complexity comparison for budgeted and non-budgeted online
multiclass algorithms.

some observations as follows. First of all, MPA outperforms
MPerceptron since the mistake rate is lower for MPA than
for Mperceptron. Secondly, the mistake rate of all budgeted
algorithms drops as the budget increases. BMPA converges
to MPA while there is a performance gap between other
budgeted algorithms and MPA. Thirdly, BMPA generally
outperforms other budgeted algorithms since it achieves the
lowest mistake rate for each dataset and each budget. Lastly,
the comparison of MRBP, BMPA-R, and BMPA-S suggests
that both the removal strategy and the non-budgeted algo-
rithm itself are important to have a good prediction perfor-
mance. All in all, we conclude that BMPA is competitive with
state-of-the-art budgeted online algorithms.

Finally, as a summary, TABLE 4 compares the time
and space complexities per update for budgeted and
non-budgeted online multiclass algorithms evaluated in this
section. Because MPerceptron and MPA are non-budgeted
algorithms, their time and space complexities depend on
the number of SEs, |It |, and grow gradually. On the other
hand, budgeted algorithms, including the proposed BMPA
algorithm, have constant time and space complexities once
the budgetB is given. Although none of the removal strategies
associated with the proposed BMPA algorithm shows bene-
fits based on the complexity comparison, BMPA-S achieves
the best prediction performance in general according to the
results demonstrated in FIGURE 6.

VII. CONCLUSION
Based on the kernel-based MPA algorithm, we propose the
BMPA algorithm that controls the growth of a kernel-based
model by limiting the maximum number of available sup-
port elements via removal and fully exploits them through
a constrained optimization. BMPA is derived from the
resource perspective, which provides an alternative and
equivalent interpretation of the kernel-based MPA algorithm.
BMPA can be treated as an approximation to MPA justi-
fied by the resource perspective. Moreover, it breaks the
curse of kernelization that makes kernel-based models fail
in resource-insufficient occasions. We study three removal
strategies along with a unified theoretical analysis for pre-
diction mistakes made by BMPA. Among them, BMPA-S
achieves the best trade-off. We conduct simulation experi-
ments on open datasets and show that BMPA is effective and

competitive. In future works, we plan to study the combi-
nation of the resource perspective and the budget idea with
more online algorithms, particularly those based on optimiza-
tion. Besides, we will study the integration of the proposed
BMPA algorithm with other kernels and the extension of
the proposed BMPA algorithm to scenarios with dynamic
computational power.

Note that the proposed BMPA algorithm is designed to
deal with online problems where the sequences of examples
are generated without any statistical assumption. There is
another research thread dealing with the sequences of exam-
ples generated from a fixed source (or a source model with
specific parameters), and this is the primary focus of batch
learning. Although the proposed BMPA algorithm may be
used for this kind of problem, it is not the main focus of
this paper. We leave it as one of the future works. On the
other hand, it has come to our attention that some of the most
representative computational intelligence algorithms are bio-
inspired, e.g., monarch butterfly optimization [56], elephant
herding optimization [57], the earthworm optimisation algo-
rithm [58], and themoth search algorithm [59]. These types of
algorithms may be used to design powerful online algorithms
and are worth for further study.
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