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Abstract—In this paper, we propose a context adaptive bit-plane
coding (CABIC) with a stochastic bit reshuffling (SBR) scheme to
deliver higher coding efficiency and better subjective quality for
fine granular scalable (FGS) video coding. Traditional bit-plane
coding in FGS algorithm suffers from poor coding efficiency
and subjective quality. To improve coding efficiency, our CABIC
constructs context models based on both the energy distribution
in a block and the spatial correlations in the adjacent blocks.
Moreover, it exploits the context across bit-planes to save side
information. To improve subjective quality, our SBR reorders the
coefficient bits by their estimated rate-distortion performance.
Particularly, we model transform coefficients with Laplacian
distributions and incorporate them into the context probability
models for content-aware parameter estimation. Moreover, our
SBR is implemented with a dynamic priority management that uses
a low-complexity dynamic memory organization. Experimental
results show that our CABIC improves the PSNR by 0.5 1.0 dB
at medium and high bit rates. While maintaining similar or even
higher coding efficiency, our SBR improves the subjective quality.

Index Terms—Bit-plane coding, fine granularity scalability,
scalable video coding.

I. INTRODUCTION

SCALABLE video coding attracts wide attention with the
rapid growth of multimedia applications over Internet and

wireless channels. In such applications, the video may be trans-
mitted over error-prone channels with fluctuated bandwidth. To
serve multimedia applications under a heterogeneous environ-
ment, MPEG-4 has defined the fine granularity scalability (FGS)
[7] that provides a discrete cosine transform (DCT)-based scal-
able approach in a layered fashion. Currently, the base layer is
coded by a non-scalable codec while the enhancement layer is
coded with an embedded bit-plane coding using variable-length
code (VLC). While offering FGS, current bit-plane coding poses
two major disadvantages.

1) Poor coding efficiency: Poor coding efficiency is con-
tributed by three factors. Firstly, information with different
weighting is jointly grouped by (Run, EOP) symbols and
coded without differentiation. Secondly, the coding of
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each bit-plane is independent and the coding of each DCT
block is uncorrelated with adjacent neighbors. Existing
correlations across bit-planes and among spatially adjacent
blocks are not fully exploited. Lastly, the VLC tables have
limitations to adapt the statistics for each sequence.

2) Poor subjective quality: Poor subjective quality is caused
by the frame raster scanning. For each bit-plane, the current
approach performs the coding in a block-by-block manner.
As the enhancement layer is partially decoded, the frame
raster scanning may only refine the upper part with one
extra bit-plane. Such uneven refinement causes the degra-
dation of subjective quality.

In this paper, our goal is to provide a generic bit-plane coding
that delivers higher coding efficiency and better subjective
quality. Our scheme is useful not only for MPEG-4 FGS
[7], but also for the advanced FGS algorithms, [3], [4], [9],
[12], [15].

For improving the coding efficiency, our prior work [10] has
shown that simply replacing VLC with arithmetic coding is in-
sufficient unless efficient context model are used. The existing
approaches, [5], [8], have taken the context adaptive bit-plane
coding (CABIC) for the DCT-based image coding. Specifically,
the transform coefficients are first partitioned into significant
bits and refinement bits, as in [13]. Then, the context model for
each type of bits is designed according to different correlations.
In [5], the energy distribution of 8 8 DCT is used to construct
a “Run” index for the significant bit. In [8], the spatial correla-
tions are considered by referring to the significance status of the
adjacent and co-located coefficients as the context model. How-
ever, for predictive enhancement-layer coding in the advanced
FGS algorithms, [3], [4], [9], [12], [15], using context models of
lower order is insufficient because the signal is more like noise.
To tackle this problem, our prior work [11] designs context
models by jointly considering the energy distribution in a block
and the spatial correlations in the adjacent blocks. Moreover, we
employ the context across bit-planes to save side information.
Although the context models are different, all the schemes try
to fully use the existing correlations for better coding efficiency.

While the coding efficiency is improved by the CABIC, the
poor subjective quality from the frame raster scanning still re-
mains. For improving the subjective quality, MPEG-4 FGS [7]
offers a frequency weighting tool. The basic idea is to shift up the
coefficients of lower frequency so that they can be transmitted
first. The subjective quality is improved since the refinement of
each block becomes more uniform. However, the shift introduces
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redundant bits that decrease the coding efficiency. On the av-
erage, at the same bit rate, a PSNR loss of 2 3 dB is observed
when the frequency weighting isenabled. To keephigh coding ef-
ficiency, [1] presents a deterministic, group-based coding order.
The transform coefficients in each block are partitioned into
several subgroups. The coding of a subgroup can only be started
when the previous subgroup of all blocks is finished. Apparently,
the deterministic partition is not optimized for every sequence.

To adapt the coding order for different input sequences, dy-
namic bit-reshuffling schemes are proposed in our prior work
[11] and the work by Li et al. [6]. The idea of bit reshuffling
is to dynamically determine the coding order of each bit by its
estimated rate-distortion performance. The coefficient bit with
better rate-distortion performance is coded with higher priority.
In [6], the bit reshuffling was first proposed to provide rate-dis-
tortion optimization specifically for the wavelet-based image
codec. In [11], it is used to improve the subjective quality of the
FGS algorithms. Previous results in [11] show that dynamic bit
reshuffling can effectively improve the subjective quality while
maintaining similar or even higher coding efficiency.

In this paper, we propose an enhanced stochastic bit-reshuf-
fling (SBR) scheme. Instead of using the uniform distribution
in [6], we model transform coefficients with discrete Laplacian
distributions, which are derived from maximum likelihood prin-
ciple. Moreover, we incorporate the context probability models
into the discrete Laplacian distributions to estimate the rate-
distortion functions of the transform coefficients. Furthermore,
to make bit reshuffling content aware so as to improve the sub-
jective quality, a dynamic priority management is developed by
considering a content dependent priority and a rate-distortion
data update mechanism. Since the bit reshuffling requires inten-
sive computations, we further propose a dynamic memory or-
ganization to reduce complexity. In summary, our contributions
and the features of this work include the following.

• A CABIC scheme that constructs context models based
on both the energy distribution in a block and the spatial
correlations in the adjacent blocks to deliver higher coding
efficiency.

• A bit-plane partition scheme that exploits the context
across bit-planes to save side information.

• An estimated Laplacian distribution is used for efficient
coding of refinement bits.

• A maximum likelihood estimator is used to minimize the
overhead for the Laplacian parameters.

• A 4 4 integer transform in [14] is used to avoid the con-
text dilution problem.

• A content aware SBR that uses estimated Laplacian distri-
butions and context probability models to improve subjec-
tive quality.

• A dynamic priority management implemented with a dy-
namic memory organization is used for SBR.

Experimental results show that our CABIC provides a PSNR
gain of 0.5 1.0 dB over the VLC-based bit-plane coding [7].
While maintaining similar or even higher coding efficiency, our
SBR significantly improves the subjective quality.

The rest of this paper is organized as follows: Section II
presents the algorithm of CABIC. Section III introduces the
concept of SBR. Section IV shows the parameter estimation in

SBR. Sections V and VI elaborate the dynamic priority man-
agement and memory organization. Section VII assesses the
rate-distortion performance. Finally, Section VIII summarizes
this work.

II. CONTEXT ADAPTIVE BIT-PLANE CODING

In this section, we present a CABIC framework for coding the
enhancement layer in FGS algorithms. Firstly, we introduce a
context-adaptive binary arithmetic coder, which is incorporated
in our CABIC as the entropy coder. Then, we present our bit
classification and bit-plane partition schemes that are used for
improving the efficiency of context utilization. Further, for each
type of bits, we detail its context model. Lastly, we illustrate the
coding flow of the proposed CABIC.

For the descriptions in the subsequent sections, we define our
terminologies for the MSB bit and MSB bit-planes as follows:
1) the MSB bit represents the most significant bit of a coeffi-
cient; 2) the MSB bit-plane of a block denotes the one that in-
cludes the MSB bit of the maximum coefficient in a block; and
3) the MSB bit-plane of a frame is the one that contains the MSB
bit of the maximum coefficient in a frame.

A. Context-Adaptive Binary Arithmetic Coding

For better coding efficiency, our CABIC incorporates a
context-adaptive binary arithmetic coder. The bit-planes are
coded in a context-adaptive, bit-by-bit manner. As compared to
VLC, context-adaptive binary arithmetic coding offers better
capability of correlation utilization, statistical adaptation, and
is closer to the entropy. Generally, its procedure includes the
following 4 steps: 1) reference of context model; 2) retrieval of
context probability; 3) binary arithmetic coding; and 4) update
of probability model. Among these steps, the context reference
is most critical to the coding efficiency.

B. Bit Classification and Bit-Plane Partition

To improve the efficiency of context reference, we propose
a bit-classification scheme and a bit-plane partition method
for distinguishing the coefficient bits with different impor-
tance so that the context models can be designed by different
sources of correlations. For the bit classification, we partition
the coefficient bits into three types including significant bit,
refinement bit and sign bit, as in [13]. Additionally, for each
bit-plane of a transform block, we propose two side infor-
mation symbols that are end-of-significant-bit-plane (EOSP)
and Part_II_ALL_ZERO. The EOSP symbol is coded after a
nonzero significant bit to notify the end of significant bit coding
and the Part_II_ALL_Zero symbol is used to represent a group
of zero significant bits.

For higher coding efficiency, a bit-plane partition method is
further employed to save EOSP bits. We observe that the mag-
nitude of a high-frequency coefficient is generally smaller than
that of a low-frequency one. When the coding is conducted from
the MSB bit-plane to the LSB bit-plane, such energy distribu-
tion suggests that the last nonzero significant bit of a bit-plane
is more probable to appear after the one of the previously coded
bit-plane in zigzag order. According to this observation, we par-
tition the significant bits of each bit-plane into two parts. From
the location of last nonzero significant bit in the previously coded
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Fig. 1. Examples of bit classification and bit-plane partition in a transform
block.

TABLE I
PROBABILITY FOR THE EOSP OF A BIT-PLANE BEING IN PART I

bit-plane, named LastS, Part I refers to the significant bits before
LastS and Part II covers the remaining significant bits. Since the
last nonzero significant bit of a bit-plane, i.e., the actual EOSP,
probably locates in Part II, we can save EOSP bits by coding them
only after the nonzero significant bits in Part II. Fig. 1 depicts a
practical example, where each column denotes the binary repre-
sentation of a coefficient and each row represents a bit-plane. For
the bit-plane partition, we note that the LastS of BP3 is at AC3.
Thus, in BP2, the significant bits before AC3 are classified as
Part I and the remaining ones are classified as Part II. In this
example, we save the EOSP bit that should be coded after the
nonzero significant bit of AC1 and at BP2. By applying our par-
tition scheme to each bit-plane, more EOSP bits can be saved.

Although the bit-plane partition saves EOSP bits, the missed
prediction of EOSP location could introduce considerable over-
head. Since we predict that the actual EOSP of a bit-plane lo-
cates in Part II, the coding is expected to stop somewhere in Part
II. When the missed prediction occurs, the redundant zero sig-
nificant bits after the actual EOSP will be coded. An example
is shown in Fig. 1, where the LastS of BP1 is before the LastS
of BP2. Thus, the redundant zero significant bits grouped by
the dash rectangle at BP1 will be coded. In Table I, we ana-
lyze the probability that the EOSP actually locates in Part I.
As shown, the missed prediction is below 10% in the higher
bit-planes while it is about 32%–50% in the lower bit-planes. To
address the missed prediction, a Part_II_ALL_ZERO symbol is
encoded prior to the coding of the significant bits in Part II for
notifying the all zero case.

C. Design of Context Model

With our bit classification and bit-plane partition, this section
further presents our context model for each type of bits. Par-
ticularly, we may jointly consider multiple factors as a context
model.

1) MSB_REACHED: The MSB_REACHED symbol is a
side information bit that indicates whether the MSB bit-plane
of a block is reached. Approximately, the MSB_REACHED
status of a block reveals the maximum energy in a block. Since
adjacent blocks generally have similar energy distribution, we
refer to the MSB_REACHED status of the nearest four blocks
as context model. Specifically, we take the summation of the
MSB_REACHED status in the nearest four blocks as context
index.

2) Significant Bit: From the MSB bit-plane to the LSB bit-
plane of a block, the significant bits of a coefficient are those
before (and include) its MSB bit. During the bit-plane coding,
we use significance status to represent the significant bits for a
coefficient. Such status is initialized with zero and updated to
the one when the MSB bit is coded. Statistical analysis shows
that significant bits make up 80%–97% of the coefficient bits in
the higher (MSB) bit-planes while they still represent 33%–51%
in the lower (LSB) bit-planes. Therefore, the coding efficiency
of significant bits is critical to the overall coding performance.

For efficiently coding significant bits, we jointly consider
multiple factors as context model. We observe that 1) the nonzero
coefficients with similar magnitude typically appear and cluster
in zigzag scanning path; 2) the co-located coefficients in the
spatially adjacent transform blocks have similar magnitude; and
3) the correlation varies with the frequency band. During the
bit-plane coding, the significance status approximately reveals
the magnitude of a coefficient. Thus, through the significance
status, we map our observations into meaningful context model
in Table II. For better understanding, Fig. 2 depicts an example of
our context model for the significant bit. According to Table II,
we can tell that the “Run” index is 1, the “Sum of Significance
Status” is 3, and the “Frequency Band” is 8.

3) Refinement Bit: The refinement bit represents less pre-
dictable information. Statistical analysis shows that the refine-
ment bits in the lower bit-planes may make up 50% or more.
Thus, the coding efficiency of refinement bits is critical to the
rate-distortion performance at high bit rates. Instead of using a
fixed context probability model for all the refinement bits [5],
[8], we use an estimated Laplacian model to derive the coding
probability for each refinement bit. There is no context model
specifically designed for the refinement bit. In Section IV, we
use an example to illustrate how to calculate the coding proba-
bility for a refinement bit.

4) Sign Bit: The sign bit records the sign of a coefficient.
Statistical analysis reveals that the distribution of a transform
coefficient is approximately symmetric with respect to zero, i.e.,
the sign bit averagely consumes one bit. Thus, we use a fixed
probability model for the coding of sign bits.

5) End-of-Significant-Bit-Plane (EOSP): The EOSP symbol
notifies the end of significant bit coding in a bit-plane. The lo-
cation of EOSP reveals the energy distribution in a transform
block. Through the spatial correlation, we can predict the loca-
tion of EOSP by taking the average of the zigzag indices from the
EOSP symbols in the nearest four neighbors. Particularly, when
the adjacent EOSP used for prediction is not reached yet, we use
the zigzag index of the last nonzero significant bit as replace-
ment. With the predicted location, we define the context model
of EOSP symbol as the offset (range: ) between the pre-
dicted EOSP location and the currently coded nonzero signifi-
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TABLE II
CONTEXT MODEL OF THE SIGNIFICANT BIT

Fig. 2. Example of the context model for the significant bit. The transform
block is with 4 � 4 integer transform.

cant bit. In addition, we jointly consider the bit-plane index as
another factor since the distribution of offset values varies for
each bit-plane. From the MSB bit-plane to the LSB bit-plane of
a block, the bit-plane index is increased by one from zero. To
save memory, the bit-plane index greater than 4 is truncated.

6) Part_II_ALL_Zero: The “Part_II_All_Zero” symbol noti-
fies the decoder about the all zero case of Part II. Table I shows
that such event is unevenly distributed. Moreover, the probability
distribution varies for each bit-plane. Thus, we take the bit-plane
index as the context model of Part_II_ALL_Zero symbol.

D. Context Dilution Problem

In our CABIC, the number of context probability models in-
creases with the transform size. For example, the context model
of significant bit takes the coefficient zigzag index as one of the
reference factors. Larger transform size requires more context
probability models that cause context dilution problem. Exper-
imental results show that the context dilution problem leads to
worse coding efficiency. To reduce the number of context prob-
ability models, our CABIC adopts the 4 4 integer transform
[14] for the coding of the enhancement layer.

E. Coding Flow Using Raster and Zigzag Scanning

With the context model for each type of bits, the enhance-
ment-layer frame is coded from the MSB bit-plane to the LSB
bit-plane. In each bit-plane, the coding is performed in a frame

raster and coefficient zigzag scanning manner. Specifically, the
transform blocks in a frame are ordered with raster scanning and
the coefficients in a block are coded in zigzag order.

Before the coding of each block, a MSB_REACHED symbol
is first coded to notify if the MSB bit-plane of a block is reached.
During the coding, different bit types are coded differently. If
the input bit is a significant bit, we examine the partition to
which the significant bit belongs. For a significant bit in Part I,
we first code the significant bit by itself. When the coded sig-
nificant bit becomes nonzero, we further code a sign bit. For a
significant bit in Part II, we additionally code an EOSP bit after
the sign bit. Particularly, a Part_II_ALL_Zero symbol is coded
prior to the coding of the significant bits in Part II. When the
Part_II_ALL_ZERO or the EOSP is true, the coding will be re-
sumed from the next block. In addition, if the input bit is a re-
finement bit, we simply code the refinement bit by itself.

Experimental results show that our CABIC scheme offers a
PSNR gain of 0.5 1.0 dB over the VLC-based bit-plane coding
in MPEG-4 FGS [7]. However, although the objective quality
(PSNR) is significantly improved, the poor subjective quality
from the frame raster scanning still remains.

III. STOCHASTIC BIT RESHUFFLING

To improve the subjective quality, we propose a content-
aware SBR scheme. Instead of using the frame raster and coef-
ficient zigzag scanning, we propose to reshuffle the coefficient
bits of each bit-plane in a stochastic rate-distortion sense.

The concept and criterion of bit reshuffling was first pro-
posed in [6] for improving the rate-distortion performance of
wavelet-based image codec. For the reshuffling, in [6] each co-
efficient bit is first assigned with two factors that are the squared
error reduction and the coding cost . With these param-
eters, the coefficient bits are reshuffled such that the associated

is in descending order. By the equal slope concept
of rate-distortion optimization theory, such order leads to min-
imum distortion at any bit rates. However, the actual and

of each coefficient bit are generally not available at decoder.
Thus, the estimated and are used to avoid the transmis-
sion of coding order. With the same estimation scheme at both
encoder and decoder, the coding order is implicitly known to
both sides. Equation (1) shows the condition of optimal coding
order in the stochastic rate-distortion sense, where denotes
taking estimation, the subscripts of and represents the
bit identification, and the one of specifies the
coding order

(1)
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Fig. 3. Probability distributions of the 4 � 4 integer transform coefficients. The legend ZZn denotes the zigzag index of a coefficient and the KLD stands for the
Kullback–Leibler distance [2]. (a) Actual probability distributions. (b) Estimated probability models.

In this paper, we employ the same concept for the bit reshuf-
fling at the enhancement layer. Particularly, our estimation in-
corporates the context probability model to make the priority
assignment content aware so that the subjective quality can be
improved. Moreover, we follow the optimized coding order in
(1) to provide similar or even better rate-distortion performance.

IV. PARAMETER ESTIMATION

To estimate the and for a coefficient bit, we resort
to their expected values. In this section, we show how we use a
discrete Laplacian distribution and context probability models
to estimate the rate-distortion function for a 4 4 integer trans-
form coefficient.

A. Discrete Laplacian Distribution

For calculating the expectations of and , we need the
probability distribution of each transform coefficient. Since the
actual distribution is only available at encoder side, we adopt a
model-based approach to minimize the overhead. Specifically,
we model each 4 4 integer transform coefficient with a dis-
crete Laplacian distribution, as defined in (2), where de-
notes the th zigzag-ordered coefficient of block and
stands for its outcome. Particularly, we assume the co-located
coefficients are independently and identically distributed (i.i.d.).
Thus, the Laplacian parameter only depends on the zigzag
index

(2)

To estimate the Laplacian parameter, we use maximum like-
lihood principle. Given a set of observed data and a pre-
sumed joint probability with an unknown parameter, the max-
imum likelihood estimator for the unknown parameter is the one
that maximizes the joint probability. For an enhancement-layer
frame with 4 4 blocks, the joint probability for the th
zigzag-ordered coefficients can be written as in (3). According

to the i.i.d. assumption, we can simplify the joint probability
as multiplication terms. Further, by substituting (2) into (3),
we can obtain a close form formula for the joint probability as
follows:

(3)

By definition, the maximum likelihood estimator of is the
one that maximizes (3). To find the solution, we take the deriva-
tive with respect to and solve for the root. We leave the detail
derivation in Appendix A. Based on (3), (4) shows our max-
imum likelihood estimator for the

(4)

According to (4), to estimate the for a coefficient, we
first calculate the mean of absolute values of the co-located
coefficients, , and then substitute it into (4) to obtain the
estimator. Specifically, the estimation is done at the encoder
and the estimated parameters are transmitted to the decoder.
For each enhancement-layer frame, we have 16 parameters for
the luminance component and another 16 parameters for the
chrominance part. Particularly, each parameter is quantized and
coded with a 8-bit syntax at frame level. Thus, for each enhance-
ment-layer frame, additional 256 bits are coded as overhead. As
compared to the entire bit-stream, the overhead is just a minor
portion.

Fig. 3 compares the estimated distributions with the actual
ones. As shown, the actual distributions are close to Laplacian
and the estimated models preserve the relative distributions of
different coefficients. To show the accuracy of our estimation,
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Fig. 4. Examples of �D estimation for the significant bit and refinement bit.

we calculate the Kullback–Leibler distance1 (KLD) [2], which
is a common measure for showing the difference between the
actual distribution and its estimation. A KLD of value 0 means
that the estimated distribution is identical to the actual one. As
shown in Fig. 3(b), the KLD between our estimated distribu-
tions and the actual ones approaches zero; that is, our estimated
distributions are close to the actual ones.

B. Estimation of Delta Distortion

To estimate the for a coefficient bit, we use the reduction
of expected squared error. Since the decoding of a coefficient bit
is to reduce the uncertainty for a coefficient, we can calculate
the reduction of expected squared error from the decrease of
uncertainty interval.

Fig. 4, we depict the estimated distribution of a 4-bit coeffi-
cient and give two examples for illustrating the decrease of un-
certainty interval. Without loss of generality, the left-hand side
shows an example of a significant bit, where the first bit is coded
as zero. On the other hand, the right-hand side illustrates the case
of refinement bit, where the first bit is nonzero.

From the coded bits, we can identify the uncertainty interval
in which the actual value is located. For instance, in the ex-
ample of significant bit, we know that the actual value is con-
fined within the interval . Similarly, for the case of refinement
bit, we learn that the actual value falls in the interval . Given
the interval derived from the previously coded bits, the next bit
for coding is to further decrease the uncertainty interval. For
example, the significant bit to be coded is to determine that the
actual value is in the subinterval or . Particularly,
for a significant bit of nonzero, an additional sign bit is coded
to further decide that the actual value is in the subinterval
or . By the same token, the refinement bit to be coded is to
determine that the actual value is in the subinterval or .

From the decrease of uncertainty interval, we can calculate
the reduction of expected squared error. At decoder side, the ex-
pected squared error in an interval is the variance within the in-
terval. Thus, we can express our estimation as the reduction
of variance. Equation (5) formulates our estimation for the

1KLD(P (x); P (x)) = P (x) log (P (x)=P (x)), where P (x) is the
actual probability distribution and P (x) is its estimation.

case of significant bit in Fig. 4, where de-
notes the conditional variance of given that is in the
interval . Similarly, we have the variances for the subintervals

, , and . Since we do not know in which subinterval the
actual value is located, the variance of each subinterval is further
weighted by its probability. To simplify the expression, we find
that the variances of and are identical because Lapla-
cian distribution is symmetric. So, we can merge the second and
the third terms in (5) by factorization. Appendix B gives the de-
tail derivations for the conditional probability and conditional
variance in terms of interval range and

(5)

In (5), the co-located significant bits within the same in-
terval have the same estimated because the co-located
coefficients have identical Laplacian model. The priorities of
the co-located significant bits may not be distinguishable. To
perform the reshuffling in a content-aware manner so that the
regions containing more energy are with higher priority, in
(5) the subinterval probabilities are replaced with the context
probability models. Recall that the context model of signif-
icant bit refers to the significance status of the adjacent and
co-located coefficients. Using the context probability model for
substitution makes the estimation become content aware
and energy dependent.

For the substitution of subinterval probabilities in (5), we find
that
actually denotes the probability of nonzero for the significant
bit to be coded and represents
its probability of zero. Hence, we use the associated context
probability models to substitute for these two terms. Equation
(6) shows the content-aware estimation for the example of
significant bit in Fig. 4, where
denotes the context probability of nonzero for the significant
bit of that locates in the interval . Correspondingly, the

represents its probability of
zero.

(6)
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Following the same procedure, one can estimate the for
the other bits. Equation (7) shows the estimated for the case
of refinement bit in Fig. 4. Since the refinement bit does not have
any context probability model, the conditional probabilities in
(7) are derived from an estimated Laplacian model

(7)

C. Estimation of Delta Rate

To estimate the for a coefficient bit, we use the binary
entropy2, which represents the minimum expected coding bit
rate for an input bit. Equation (8) defines our estimation for
the significant bit in Fig. 4. The first term represents the binary
entropy of a significant bit using the context probability model
as an argument while the second term denotes the cost from a
sign bit. The sign bit is considered as partial cost of the signifi-
cant bit because the decoder can only perform the reconstruction
after the sign is received. Recall that each sign bit averagely con-
sumes one bit. Also, the sign bit is only coded after a significant
bit of nonzero. Thus, the cost of the sign bit is weighted by the
context probability model of nonzero

(8)

In addition, (9) illustrates our estimation for the example
of refinement bit. To calculate the binary entropy, we use the
conditional probability of a subinterval as an argument. For in-
stance, we use as an argument in
(9). In particular, as mentioned in Section II, such an estimated
probability is not only for the calculation of binary entropy, but
also for the CABIC coding. By the same methodology, one can
estimate the for the other bits

(9)

V. DYNAMIC PRIORITY MANAGEMENT FOR

STOCHASTIC BIT RESHUFFLING

Given the estimated rate-distortion performance for each co-
efficient bit, in this section, we further show how these data are
used for the SBR. Firstly, we illustrate our constraints for the
reshuffling. Then, we present the dynamic priority management
for the SBR. Lastly, we use an example to illustrate the idea.

A. Constraints of Reshuffling Order

In our algorithm, we pose two constraints on the reshuffling
order to maintain low complexity and high coding efficiency.

2H (P (1))= �P (1)�log (P (1))�(1�P(1))�log (1�P (1)), where
P(1) is the nonzero probability of the coding bit.

These constraints make our implementation suboptimal in the
stochastic rate-distortion sense. Specifically, they are as follows.

• For an enhancement-layer frame, the coding is conducted
sequentially from the MSB bit-plane to the LSB bit-plane.
This constraint is to keep low complexity. Ideally, the
reshuffling should allow the coefficient bits at different
bit-planes be coded in an interleaved manner. However, in
practical implementation, such flexibility requires a huge
amount of coding states and branch instructions. Thus, in
this paper, we perform the SBR in a bit-plane by bit-plane
manner.

• For each bit-plane of a transform block, the coding of the
significant bits in Part II always follows zigzag order.
This constraint is to maintain high coding efficiency. Re-
call that the coding of the significant bits in Part II will stop
as the actual EOSP is reached. Since the location of EOSP
is not known in advance, we follow zigzag order for the
coding of the significant bits in Part II to prevent the re-
dundant bits after EOSP from coding.

B. Dynamic Priority Management

To maintain the coding priority, we implement two dynamic
coding lists for the reshuffling of significant bits and refinement
bits. Each type of bits in the associated list allocates a register to
record its bit location and estimate rate-distortion data. For syn-
chronization, both encoder and decoder follow the same proce-
dure to manage the lists. Sequentially, the management scheme
includes the following five steps.

1) Coding List Initialization: Before the coding of each bit-
plane, we estimate the rate-distortion data for the following
bits and put them in the associated coding lists: 1) all the
significant bits in Part I; 2) all the first zigzag-ordered sig-
nificant bits in Part II; and 3) all the refinement bits in the
current bit-plane.

2) Coding List Reshuffling: After the initialization, we per-
form the reshuffling, according to the estimated rate-dis-
tortion data, to identify the highest priority bit in the lists,
i.e., the one with maximum . In addition,
the reshuffling is performed after the coding of each bit.

3) Binary Arithmetic Coding: Once the highest priority bit
is identified, we follow the CABIC scheme in Section II
for coding.

4) Rate-Distortion Data Update: After the coding of a
nonzero significant bit, we update parts of the rate-dis-
tortion data in the list of significant bit. Such update is to
guarantee that our priority assignment is based on the latest
context probability model. Moreover, through the update,
we can fully utilize the coded information to enhance the
effectiveness of content-aware bit reshuffling. Specifically,
whenever a significant bit of nonzero is coded, we search
in the coding list and update the registers for the following
significant bits.
• Category 1: The significant bits that have the same con-

text index as the current coded one.
• Category 2: The co-located significant bits in the adja-

cent blocks.
• Category 3: The significant bits in Part I that locate after

the current coded one (in zigzag order).
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Fig. 5. Example of dynamic bit reshuffling in a bit-plane.

Updating the significant bits of Category 1 is necessary
since the context probability model is refined after the
coding. By the same token, updating the significant bits
of Categories 2 and 3 is essential because the associated
context indices have changed. Recall that the context
model of significant bit refers to the significance status
of the adjacent and co-located coefficients. Since all the
coefficients are initialized with insignificant status, the
context indices for those significant bits in Categories
2 and 3 are changed as the coded coefficient becomes
significant. Therefore, we must update their rate-distortion
data. Particularly, the rate-distortion data of the refinement
bit is not required for update because it is derived from the
estimated Laplacian model, which is fixed throughout the
reshuffling process.

5) Significant Bit Inclusion: From our reshuffling con-
straints, the coding of the significant bits in Part II always
follows zigzag order. Thus, whenever a significant bit in
Part II is coded, we estimate the rate-distortion data for
the next zigzag-ordered significant bit and put it in the list.

To complete the coding of a bit-plane, Steps 2 5 are repeated.
When the coding of a bit-plane is done, we repeat Steps 1 5
until all the bit-planes are coded.

For better understanding, in Fig. 5, we use an example to il-
lustrate the reshuffling process, where the binary number in each
rectangle represents the content of a coefficient bit and its sub-
script denotes the bit identification. For simplicity, we only illus-
trate the reshuffling of significant bits. One can follow the same
procedure to reshuffle the refinement bits. Practically, after the
reshuffling of each list, we compare the highest priority bit in
each list to identify the one for coding.

In the example of Fig. 5, we simplify the priority calculation
as the summation of “(3-Run)” and the “Sum of Significance
Status” that is defined in Table II. With our definition, the coef-
ficient bits that have a shorter run and more significant coeffi-
cients in the adjacent blocks will be assigned with higher coding
priority. Specifically, to calculate the priority for each bit, the
significant bits to be coded are first initialized with insignifi-
cant status and the refinement bits are considered as significant.

TABLE III
LIST OF THE SIGNIFICANT BIT DURING THE BIT RESHUFFLING

Thus, for the bit 1C, its “Sum of Significance Status” is 2 and
its “Run” index is 0. According to our definition, the bit 1C has
a priority value of 5. By the same procedure, the priorities for
the other significant bits can be obtained.

In Table III3, we present the content of significant bit list
for the example in Fig. 5. On the right-hand side of Table III,
we show the reshuffling result based on the coding priority. As
shown, for the initialization, the coding list first includes the sig-
nificant bits in Part I and the first zigzag-ordered significant bits
in Part II. Then, according to the priority, the reshuffling is per-
formed. Table III shows that 1C has the highest priority after
the reshuffling. Hence, we start the coding form the 1C. After
1C is coded, we skip Step 4 because the adjacent and co-lo-
cated coefficients have become significant. There are no signifi-
cant bits to be updated. In addition, Step 5 is also skipped since
1C is the EOSP of a block. As a result, after the coding of 1C,
we directly perform the coding for 4C. Particularly, after 4C is
coded, we skip Step 4 for the same reason as the 1C. However,
we include 4D in the list according to Step 5. The following
2B, 1A, and 2A are coded similarly. But, after 2A is coded and
becomes nonzero, we update the rate-distortion data of 4A ac-
cording to Step 4. As illustrated in Table III, the 4A becomes
the one with the highest priority after the update and reshuf-
fling. Therefore, we resume the coding from 4A. By continuing
the procedure, one can finish the coding of significant bits and
obtain the coding order as

. In particular, with the reshuf-
fling, 2B is coded prior to 2A, which means that the significant
bits in Part I could be coded in an order other than zigzag. We

3Context=(Summation of co-located significance status in the nearest four
blocks Run).
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Fig. 6. Comparison of number of nonzero significant bits with different coding
orders.

use such flexibility to allow optimization. As compared to the
frame raster and coefficient zigzag scanning,

, Fig. 6
shows that our SBR has more significant bits of nonzero among
the same number of coded significant bits. Generally, a signif-
icant bit of nonzero contributes more to the error reduction at
decoder.

VI. DYNAMIC MEMORY ORGANIZATION

The reshuffling and update process causes intensive com-
putation. With straightforward implementation, the estimated
rate-distortion data of all coefficient bits must be updated after
the coding of a nonzero significant bit; then, the reshuffling is
conducted using all coefficient bits as input. From the profiling
of foreman CIF sequence on P4 2.0-GHz machine, it takes about
30 min for the bit-plane encoding4 of an enhancement-layer
frame, which is unacceptable and unrealistic. Thus, in this sec-
tion, we propose a dynamic memory organization to reduce the
complexity of SBR.

A. Memory Management for the List of Significant Bit

For reducing the complexity of update and reshuffling, we
observe that not all the registers are required for modification
after the coding of a nonzero significant bit. Thus, we can mini-
mize the computation by updating those outdated registers while
keeping the others untouched.

To update the outdated registers, we first search them in the
list. To quickly identify the registers of Category 1, we group
the registers recording the same context index by a linked list.
The right-hand side of Fig. 7 shows an example, where each
circle denotes the associated register of a significant bit and
each rectangle represents a context group. In each group, the
registers with the same context index are grouped by a linked
list. In addition, to identify the registers of Categories 2 and 3,
we avoid exhaustive searching by confining our search within
certain context groups. To determine which context groups for

4The bit-plane coding at the enhancement layer has balanced complexity in
encoder and decoder.

search, we follow the definitions of Categories 2 and 3 to de-
rive the bit locations for those outdated significant bits. From
the bit locations, we further calculate their context indices be-
fore the coding by reversing the significance status of the cur-
rently coded bit. These context indices then determine the con-
text groups for search. Within a group, we perform the search
by comparing the bit location. Then, we update the outdated
rate-distortion data using the latest context probability model.

After the update, we perform the reshuffling in a hierarchical
way. Specifically, we first identify the highest priority bit in each
group. Then, we assign each group a context group pointer that
points to the highest priority bit in a group. Lastly, we reshuffle
the context group pointers to find out the highest priority bit in
the list. Note that we do not directly reshuffle the highest priority
bit of each group since we want to maintain the same context
group structure. Particularly, the reshuffling in each group and
the reordering of all the context group pointers are performed in
the initialization step. During the actual coding, we only modify
certain context groups and context group pointers so that the
computation for reshuffling is minimized. Fig. 7 shows an ex-
ample of our priority structure. For each group, the priority
from left to right is in descending order. Similarly, for different
groups, the priority of the highest priority bit from top to bottom
is in descending order, i.e., we have

. In this example, A3 is not only the highest priority bit of
Ctx3 group, but also has the highest priority in the list.

During the reshuffling and update, we must quickly access
a context group for a given context index. To avoid exhaustive
search in the linked list of context group pointers, we construct a
look-up table that takes the context index as input and produces
the associated context group pointer. The left-hand side of Fig. 7
depicts an example of the look-up table.

To show our dynamic memory organization, we use Fig. 7 as
an example, where we assume that the registers in each group
and the context group pointers have been reshuffled since the
initialization. According to our priority structure, we start the
coding from A3. Moreover, we assume the context indices of
relevant registers B5 and A2 must be changed as A3 is recog-
nized significant. To perform the reshuffling, after A3 is coded,
we first update the rate-distortion data for the registers in the
same group, i.e., B3, C3, and D3. Next, we update the rate-dis-
tortion data of B5 and A2. Then we move B5 and A2 to the other
context groups since their context indices have been changed.
Specifically, the destination groups are determined by their con-
text indices after A3 becomes significant. For example, in Fig. 7,
the register B5 is updated and moved from the Ctx5 group to
the B4 position of the Ctx4 group. Similarly, the register A2 is
updated and moved from the Ctx2 group to the Ctx6 group. Par-
ticularly, we put B5 at the location of B4 because the priority in
the Ctx4 group is .

After the update and movement for the relevant context
groups (i.e., Ctx groups 3, 5, 2, 4, and 6), the highest priority
bits of Ctx3, Ctx2, and Ctx6 groups have been changed. Thus,
we must determine their new positions in the linked list of the
context group pointers. To do so, we first remove the context
group pointers (i.e., Context group pointers 3, 2, and 6) from
the linked list. Then, we sequentially insert them back at proper
positions by comparing the registers of the highest priority
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Fig. 7. Dynamic memory organization for the list of the significant bit.

TABLE IV
AVERAGE EXECUTION TIME FOR THE BIT-PLANE ENCODING OF AN ENHANCEMENT-LAYER FRAME ON P4 2.0-GHz MACHINE

TABLE V
ENCODER PARAMETERS FOR THE EXPERIMENTS

after the update. Particularly, the linked list of context group
pointers is bidirectional. We can easily remove any context
group pointer from the list. In this example, we only modify the

contents of the context groups 3, 5, 2, 4, and 6 while keeping the
others untouched. The computation for update and reshuffling
is minimized.
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Fig. 8. Luminance PSNR comparison of baseline (VLC-based bit-plane coding in MPEG-4 FGS), baseline with frequency weighting, the proposed CABIC with
frame raster and coefficient zigzag scanning, and the proposed CABIC with SBR.

B. Memory Management for the List of Refinement Bit

For the refinement bit, we only reshuffle the registers for iden-
tifying the highest priority one. There is no need for update and
relocation. Thus, we simply use a linked list to maintain the list
of the refinement bit.

As compared to straightforward implementation, Table IV
shows that a relative improvement ratio of more than 48 is
achieved. Although the performance is still far way from real-
time, more improvements are expected by further optimizing in
both algorithmic and coding aspects.

VII. EXPERIMENTS

In this section, we assess the rate-distortion performance and
subjective quality of our proposed scheme. For a fair compar-
ison, all the schemes implemented adopt H.264 JM4 [14] as the
base layer and RFGS [4] as the prediction scheme for the en-
hancement layer. Specifically, we use the VLC-based bit-plane
coding [7] as baseline. Moreover, we show the performance of
baseline with frequency weighting. To compare the rate-distor-
tion performance, our decoder truncates the bit-stream of the en-
hancement layer at multiple bit rates and measures the PSNR of
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Fig. 9. Subjective quality comparison of the 94th frame in Foreman CIF sequence with bit rate at 255 kbits/s. (a) Baseline (VLC-based bit-plane coding in MPEG-4
FGS). (b) Baseline with frequency weighting. (c) Proposed CABIC with frame raster and coefficient zigzag scanning. (d) Proposed CABIC with SBR.

decoded video respectively. In addition, to compare the subjec-
tive quality, we show the decoded frames of different approaches
at the same bit rate. Table V lists our encoder parameters. For
each sequence, different coding schemes use identical encoder
parameters. In particular, to setup the frequency weighting ma-
trix for the baseline, we follow the rule in [7] to have the coef-
ficients of a lower frequency be coded with higher priority.

In Fig. 8, we compare the PSNR of different approaches at
various bit rates. As shown, enabling the frequency weighting
on the baseline causes a PSNR loss of 2 3 dB. Conversely, as
compared to the baseline, our CABIC with frame raster and co-
efficient zigzag scanning improves the PSNR by 0.5 1.0 dB
at medium and high bit rates. Particularly, up to 2 dB gain can
be observed in the News QCIF sequence. On the other hand, at
the lower bit rates, the gain is less significant because the trun-
cation of the enhancement layer causes drifting errors [4] and

the proposed CABIC takes time for the convergence of context
probability models. In addition, our SBR can further offer up to
0.2 0.5 dB improvement.

While maintaining similar or even higher coding efficiency,
our SBR offers better subjective quality. Fig. 9 shows the
comparison of visual quality using Foreman CIF sequence.
For better assessment, we have enlarged the regions where
the subjective quality shows noticeable differences. As shown,
the baseline and our CABIC with frame raster and coefficient
zigzag scanning reveal obvious blocking artifact. On the other
hand, the frequency weighting can provide smoother quality.
But, the edge and texture parts are blurred because the co-
efficients of higher frequency are always with lower coding
priority. In contrast, our CABIC with content-aware SBR not
only provides more uniform quality, but also keeps the details
of edge and texture.
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VIII. CONCLUSIONS

In this paper, we propose a CABIC with a SBR scheme to
deliver higher coding efficiency and better subjective quality for
FGS video coding. For higher coding efficiency, we construct
context models based on both the energy distribution in a block
and the spatial correlations in the adjacent blocks. Moreover, we
exploit the context across bit-planes to save side information.
Experimental results show that our CABIC provides a PSNR
gain of 0.5 1.0 dB over the VLC-based bit-plane coding [7].

Further, for better subjective quality, our SBR combines con-
text probability models and estimated Laplacian distributions to
reorder coefficient bits in such a way that the estimated rate-
distortion performance is in descending order. As compared to
the approaches with frame raster and coefficient zigzag scan-
ning, our SBR provides better visual quality and maintains sim-
ilar or even higher coding efficiency.

This work proves that the bit-plane coding in MPEG-4 FGS
[7] can be further improved in coding efficiency and subjec-
tive quality by additional complexity. However, as compared to
the nonscalable H.264 [14], there is still a performance gap of
2 4 dB with our testing conditions. To further reduce the gap,
the proposed scheme can be improved with the stack FGS algo-
rithms and hierarchical prediction schemes [3], [12] used in the
current scalable video coding standard.

In addition to coding efficiency and subjective quality, an-
other important issue that is not discussed in this paper is error
resilience. Due to the data dependency from the context models
and the nature of arithmetic coding, the proposed CABIC and
bit reshuffling are less robust to transmission errors. For error
resilience, one of the possible solutions is to partition the en-
hancement-layer frames into multiple slices as the flexible mac-
roblock ordering (FMO) in H.264 [14]. However, penalty on
coding efficiency is expected. Thus, how to provide the op-
timal tradeoff between coding efficiency and error resilience
still leaves lots of spaces for future research activities.

APPENDIX A

This appendix shows the derivation of maximum likelihood
estimator for the Laplacian parameter, . To maximize (3),
the must be the root of (A1). For simplification, we have
incorporated a logarithm function in (A1) to transform the
exponential terms into additions/subtractions. Since logarithm
function is monotonic, the root of (A1) is also the one that
maximizes (3)

(A1)

After taking the derivative with respect to , (A1) can be
rewritten as (A2)

(A2)

Since is a real number between 0 and 1, we exclude the
root that does not meet such a constraint. Equation (A3) shows
the remaining solution of that maximizes (3).

(A3)

APPENDIX B

This Appendix shows the detail expressions for the condi-
tional probability and variance. Without loss of generality, we
use the example of refinement bit in Fig. 4 for illustration. Eq.
(B1) lists the definition of . Since the
segment in Fig. 4 is contained in the segment ,

in (B1) can be simplified as .
By substituting (2) into (B1), we can further obtain the formula
for

(B1)

In addition, (B2) lists the definition of
. As shown in (B2), the calculation of conditional variance

involves the conditional expectation. To compute such an in-
termediate result, (B3) defines the conditional th moment of

given

(B2)

(B3)

By substituting (B3) and (2) into (B2), (B4) shows the formula
for the

(B4)
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For the calculation of the other conditional probabilities and
variances in (6)–(9), one simply needs to modify the ranges of
summation in (B1) and (B4).
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