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Abstract

This paper presents a novel edge preserving interpolation method for digital images.

This new method reduces drastically the blurring and jaggy artifacts at the high-contrast

edges, which are generally found in the interpolated images using conventional meth-

ods. This high performance is achieved by two proposed operations: a fuzzy-inference

based edge preserving interpolator and a highly oblique edge compensation scheme de-

veloped based on an edge orientation detector. The former synthesizes the interpolated

pixels to match the image local characteristics. Hence, edge sharpness can be retained.

However, due to the small footage of the fuzzy interpolation method, it can not avoid

edge jaggedness along the highly oblique edges that have very sharp angles against one

of the coordinates. Therefore, a segment matching technique is developed to identify

precisely the orientation of the highly oblique edges. Combining these two techniques,

we improve significantly the visual quality of the interpolated images, particularly at

the high-contrast edges. Both the synthesized images (such as letters) and the natural

scenes (captured by camera) have been tested and the results are very promising.
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List of symbols

For all equations; 1 : “one”, 0 : “zero”, ∆ : uppercase “delta”, λ : lowercase “lambda”

Eq.(9-15); k : lowercase “kay”

Eq.(16); k : lowercase “kay”

Eq.(21-22); k : lowercase “kay”

Table 2; K : uppercase “kay”
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1 INTRODUCTION

Interpolation is an important technique in multi-rate image signal processing such as

pyramid coding [1], multi-resolution television broadcasting [2, 3], and image zooming for

viewing comfort. Linear interpolation methods are commonly used [4, 5, 6, 7]. According

to sampling theory, an ideal lowpass filter is needed to remove the replicated copies of the

down-sampled (low resolution) signal spectra located at high frequencies. Therefore, the con-

ventional linear spatial invariant interpolator is designed to be a lowpass filter. An extension

of the above approach is patching pieces of continuous (spline) functions that match the

given (known) pixels, and then, the pixels in-between can be synthesized from the continuous

functions [5].

Blurring and jaggedness are the two most obvious artifacts in the interpolated images

using the preceding interpolation methods. These artifacts are produced by the lowpass filter

used to remove the unwanted highpass replica of the interpolated images in the frequency

domain. Because it is not possible to implement the ideal low pass filter in practice, non-

ideal filters such as the zero-order hold (nearest neighbor) and the first-order hold (bilinear)

operators are often employed to filter out the high frequency replica. These non-ideal lowpass

filters suppress low frequency components and bring in high frequency component aliasing.

The former, low frequency suppression, reduces the spatial resolution of the interpolated

images (blurring) and the latter, undesired high frequency aliasing, produces broken edges

(jaggedness).

Recently, several adaptive nonlinear methods have been suggested to tackle the afore-

mentioned problems. As it has been pointed out to various levels of extent [8, 9, 10, 11, 12, 13]

that in order to achieve a better visual quality, the lost high frequency components need to

be reconstructed based on certain assumptions (models) of image characteristics. The basic

concept is as follows. In the down-sampling process, the high frequency components in the

original high resolution pictures are removed by lowpass filtering before resolution reduction.

Now, the interpolated image has a higher spatial resolution and thus our eyes expect to see
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more details in the picture. For most typical pictures, the information contained in the sub-

sampled (down-sampled) image usually can provide clues about the lost components. The

most obvious example is the high-contrast edges, which are modeled as step signals. Thus,

if a segment of image is recognized as an edge, proper high frequency components can be

added into the interpolated (lowpass) signals to enhance the edge shape. Therefore, non-

linear and/or spatially variant interpolators designed based on this concept could potentially

produce images with better perceptual quality than the conventional filtering methods. Our

approach in this paper is another attempt to regenerate the original high resolution images

based on our prior knowledge of typical images. Thus, similar to many other model-based

approach [8, 9, 10, 11, 12] our methods contain essentially two elements [13]: i) determine the

image local characteristics (flat regions, edges, etc.) and ii) generate the interpolated pixels

by properly weighted averaging. However, there are many different ways of utilizing the image

local characteristics for interpolation purpose. Also, the exact procedure used in synthesizing

the interpolated pixels has a strong impact on the final performance. Our method described

below seems to be able to produce very promising pictures particularly on the difficult parts

of an image such as the highly oblique edges 1.

Furthermore, many existing interpolation methods are separable operators along two

axes. Although separable operators are simple in implementation, they often result in jagged-

ness, particularly, along the diagonal edges. Fig. 1 illustrates the potential advantage of using

diagonal correlations. Fig. 1a shows the interpolation result generated by a separable bilinear

interpolation filter. It is clear that the interpolated pixel intensity p(x + ∆/2, y + ∆/2) =

1
4
(P (x, y) + P (x + ∆, y) + P (x, y + ∆) + P (x + ∆, y + ∆)) is not the most desirable value,

where P (x, y), P (x+∆, y), P (x, y+∆) and P (x+∆, y+∆) are the four given pixel intensities.

If we consider the diagonal correlation, since 3 out of 4 given pixels have close intensity values,

it seems more natural to set the interpolated center pixel the same as the 3 dominated pixels

as shown in Fig. 1b. Again, this more desirable result is judged based on our prior knowledge

1The edge orientation has a very sharp angle against either the horizontal or the vertical axes.
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of typical pictures that high-contrast edges are often contiguous.

Unlike the ideal case shown in Fig. 1, the captured natural images usually contain

camera noise. Also, the surfaces of flat objects do not produce exactly the same pixel values

when captured by a camera. How to compute the directional correlations of the original

pixels from the sampled pixels and use them properly to generate the interpolated pixels is

one of the key issues in this paper. Six directional classes are defined on the quadrant (pixel)

set which is composed of the four neighboring pixels on a square. According to its local

gradient magnitude, each quadrant set is classified into one of the six classes. Furthermore, a

fuzzy inference method is devised to synthesize the interpolated pixels with reduced blurring.

According to its class, either the bilinear or the fuzzy method is applied to a quadrant set.

The switch between the fuzzy and the bilinear interpolation can preserve the edge contrast

while at the same time keeps computational complexity at a reasonably low level because the

bilinear interpolation costs much less in computation but is frequently used in a typical image

with large smooth regions. This is our first contribution 2.

Because edges of an image convey most essential perceptible information to the human

eyes 3, it is important to preserve the edge integrity and to enhance edge sharpness which

is blurred due to the lost high frequency components in the subsampling process. In the

previous studies [10, 14, 15], local edge detectors are often used to extract the edges. However,

it is observed [13] that the highly oblique edges in natural images often cannot be correctly

identified by a local edge detector. Because the fuzzy based interpolation method described

in the last paragraph uses only the local information around 4 pixels, it cannot trace the

highly oblique edges. In order to identify the orientations of these edges, a segment matching

method is proposed in this paper. This method detects the edge orientation by shifting a

segment of edge profile and matching it against the candidate segment in its neighborhood.

2An early version of our method is summarized in [13].
3It is reported [16] that the very first step in the human perceptual system is to convert images into nearly

edge-only signals.
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After the edge orientation is accurately identified, pixels parallel to the edge orientation can

be interpolated with little distortion. Jaggy artifacts of the interpolated images can thus be

significantly reduced. This is our second contribution 2.

This paper is organized as follows. An edge-preserving interpolation method based on

fuzzy inference is described in Section 2. In order to efficiently apply this edge-preserving

method to images, a classification and interpolation scheme is proposed in Section 3. Because

it is difficult to interpolate the highly oblique edges with local edge detector only, a segment

matching method is suggested in Section 4. With the help of screening criteria, this method

locates the highly oblique edges quite successfully. Simulation results of the proposed methods

and some other approaches are shown in Section 5, and Section 6 concludes this paper.

2 FUZZY-INFERENCE BASED INTERPOLATION

As described earlier that the second key element in the modern model-based interpola-

tion is the method of synthesizing the interpolated pixels. Typically, a weighted neighboring

pixel interpolator with spatially varying weighting factors is used [8, 9, 17, 18]. In these ap-

proaches, the weighting factors are either pre-selected sets of values or ordinary arithmetic

functions of image local features. From time to time, their results do not match the human

subjective expectation. Hence, we propose an interpolator based on fuzzy inference. This

method preserves edges and it is almost scale invariant. Another advantage is that it is easy

to extend this method to the multi-dimensional cases without the drawback of the separable

operators.

2.1 Spatially adaptive interpolation based on local gradients

To evaluate the performance of different interpolation methods, we assume that the

original signal f(x) is continuous. Let f(x+n∆) be the given samples, where ∆ is the sampling

interval. Our goal here is to find the interpolated value of f(x+ ∆
2

) based on the information

at locations x and (x+ ∆). The Taylor series expansion at (x+ ∆
2

) gives

f(x+
∆

2
) = f(x) + f ′(x)

∆

2
+ f ′′(x)

∆2

8
+R1, (1)
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where R1 represents all the remaining higher order terms (similar definition for R2 in the

following equation). Similarly, we could express f(x + ∆
2

) using Taylor series expansion at

(x+ ∆); that is,

f(x+
∆

2
) = f(x+ ∆)− f ′(x+ ∆)

∆

2
+ f ′′(x+ ∆)

∆2

8
+R2. (2)

Averaging (1) and (2), we obtain

f(x+
∆

2
) =

1

2

[
f(x) + f(x+ ∆) +

f ′(x)− f ′(x+ ∆)

2
∆ +

f ′′(x) + f ′′(x+ ∆)

8
∆2 +R1 +R2

]
.

(3)

It is ready to see that the ordinary bilinear interpolation can be deduced from (3) by

assuming that the first-order differential of f(x) is constant and the second and higher order

terms are negligible for all x. Though only the middle point is expressed in (3), expressions

for all the points between the given samples can be derived similarly. If the second-order

differential becomes significant and is assumed to be constant, the cubic spline interpolation

with parameter a = −0.5 is then derived as described in Parker et al. [5]. In the cubic spline

interpolation, the first-order differential is approximated by (f(x + ∆) − f(x))/∆ and the

second-order differential by (f ′(x + ∆)− f ′(x))/∆. As we can expect heuristically the inter-

polation error is reduced if the second-order differential, i.e., the slope variation, is included.

From the signal processing viewpoint, we are designing a higher order filter to approximate

the ideal lowpass filter.

It seems that including additional higher order terms into our interpolator would im-

prove the interpolation performance. However, this direction has its limit because we are

given only the samples on the discrete grids. Approximating differentials using differences

at the known samples has a limited accuracy and this approximation error increases as the

differentiation order becomes higher. Another problem is that in the high contrast areas high

order filters may not produce a better subjective image quality. Hence, instead of exploring

the higher order differences further, we propose a nonlinear interpolation method based on

the first order differences.
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The basic concept of our method is as follows. We know that the interpolated sample

at the middle point can be approximated by (3). Assume that the differentials with orders

higher than three are insignificant and the second-order differential is a fixed constant. First,

we try to find the relationship between the to-be-interpolated sample and the local gradients

at the given samples. If |f ′(x)| > |f ′(x+ ∆)|, we have

either f ′(x) > |f ′(x+ ∆)| ≥ 0 or f ′(x) < − |f ′(x+ ∆)| ≤ 0. (4)

In first case, we have f ′(x)−f ′(x+∆) > 0. Since f ′′(x) equals to f ′′(x+∆) (our assumption)

and assume f ′′(x) can be approximated by (f ′(x+ ∆)− f ′(x))/∆, we obtain

f(x+
∆

2
) =

1

2

[
f(x) + f(x+ ∆) +

f ′(x)− f ′(x+ ∆)

4
∆

]
. (5)

Because f ′(x)− f ′(x+ ∆) > 0, we conclude from (5) that

f(x+
∆

2
) >

1

2
[f(x) + f(x+ ∆)] . (6)

Note that f(x) < f(x + ∆) because f ′(x) > 0. Eq. (6) shows that the middle interpolated

sample should have a value closer to f(x+ ∆), the sample with a smaller gradient. A similar

observation can be derived for the second case in (4).

2.2 Edge preserving interpolation based on fuzzy inference

We adopt the fuzzy inference [19, 20] in our interpolation process. The interpolated

sample at x+ ∆/2 is produced by

f(x+
∆

2
) = w(|f ′(x)|) · f(x) + w(|f ′(x+ ∆)|) · f(x+ ∆), (7)

in which

w(|f ′(x)|) + w(|f ′(x+ ∆)|) = 1 (8)

with w(|f ′(x)|), w(|f ′(x+ ∆)|) ≥ 0. Based on the reasoning in the Section 2.1, w(·) should be

a non-increasing function; that is, w(a) decreases as a increases. Here we adopt the fuzzy logic

to implement (7) instead of defining an arithmetic weighting function w(·) explicitly. The fuzzy
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method is chosen due to two major reasons. First, it can convey the concept in (6) in a way

closer to human inference and thus produce better visual quality pictures (e.g., sharper edges)

than the conventional methods. Second, by properly selecting the membership functions, the

1-D fuzzy method can be extended directly to the 2-D case for image applications.

In its general form, a fuzzy logic system consists of four basic components: fuzzy rule

base, fuzzifier, fuzzy inference engine and defuzzifier. Fig. 2 shows the block diagram of a

typical fuzzy logic system. In our application, a fuzzy rule base is a collection of IF-THEN

rules that have the following structure:

Rule(k) : IF r1 is Fk1 and · · · and rn is Fkn THEN z is Gk, (9)

where k is the rule index; Fki and Gk are fuzzy sets defined on their universes of discourse

Ui ⊂ R (e.g., domain of pixel location) and V ⊂ R (e.g., domain of pixel intensity) respectively.

In this application, R is the real axis, and r = (r1, · · · , rn)T ∈ U1 × · · · × Un where ri denotes

the ith input linguistic variable (e.g., coordinate of the to-be-interpolated pixel) and z ∈ V
is the output linguistic variable (e.g., distribution of possible interpolated pixel value). To

convert (7) to a fuzzy logic system, a simple fuzzy rule base with two rules is constructed as

follows:

Rule(1) : IF r1 is proximate to x THEN f(r1) is f(x)

Rule(2) : IF r1 is proximate to x+ ∆ THEN f(r1) is f(x+ ∆)
(10)

The meaning of “proximate to” and its implication in this inference is the key to the success

of our scheme. In our usage, “r1 is proximate to x” means that the pixel at location r1

should have a value close to the pixel at x based on the image local characteristics around r1

and x. The degree of “r1 is proximate to x” depends on both the shape of the membership

function defined around x and the distance between r1 and x. The discussion at the end of

Section 2.1 suggests that if r1 = x + ∆
2

(r1 is equally distant from x and x + ∆) and the

gradient of f(x) is smaller than that of f(x + ∆), then the degree of “r1 is proximate to x”

will be higher than that of “r1 is proximate to x+ ∆”. This is the principle behind our design
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of the gradient dependent membership functions. Next, we like to choose the shape of fuzzy

membership functions that would properly convey this proximity concept; this choice is often

subjective and application dependent. Because, in our simulations, the Gaussian membership

function demonstrates a better performance than the triangular or the trapezoidal functions

in preserving edge contrast, it is chosen as the antecedent part in (10):

µFki(ri) = exp[−(
ri − r̄ki
σki

)2] k = 1, 2 (11)

where k is the rule index and r̄ki and σki are adjustable parameters. Note that i = 1 for 1-D

input signals. In this application, r̄11 = x and r̄21 = x + ∆. According to the observations

at the end of Section 2.1, we make σk1 a function of the absolute value of the “gradient”

(first-order difference). We assume a simple relation between σk1 and the gradient D(·):

σk1 = α ·D(r̄k1) + β, (12)

where α and β are fixed parameters. D(r̄k1) is the normalized first-order difference,

D(r̄k1) ≡ |f
′(r̄k1)|
f ′max

, (13)

where f ′max is the absolute value of the maximum possible first-order difference. It is deter-

mined by the allowable range of f(·); for example, f ′max is 255 for 8-bit gray level images. Note

that the α and β values are chosen such that σk1 is small when D(r̄k1) is large. Therefore,

α is negative and β > |α|. We will show, by examples, our choice of their values and their

impact on interpolation.

A fuzzy inference engine is an operator that maps the input fuzzy sets in U = U1 ×
· · · × Un to the output fuzzy sets in V according to the IF-THEN rules in the rule base. Let

A be the input fuzzy set in U and Bk be the output fuzzy set produced by Rule(k) in (9).

The output membership function is described by

µBk(z) = sup
r∈U

[µFk1×···×Fkn→Gk(r, z) ? µA(r)]. (14)
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The fuzzy reasoning Fk1 × · · · × Fkn → Gk can be defined in several ways. Here we adopt the

product-operation rule [21, 22] for it fulfills our requirement in (7). That is,

µFk1×···×Fkn→Gk(r, z) =
n∏

i=1

µFki(r) · µGk(z). (15)

And ? is chosen to be the algebraic product operator which is one type of the t-norm inter-

section operations [22].

As described earlier, the input to a fuzzy logic system should be a fuzzy set. In the

case of interpolation, the input is a sample location, a crisp point. We need to map this crisp

input to a fuzzy set. The singleton fuzzifier is thus used. It maps a crisp point a into a fuzzy

set A with the property: µA(x) = 1 for x = a and µA(x) = 0 for all other x belonging to U ,

where U is the universe of discourse. At the end of this inference process, a defuzzifier maps

the output fuzzy set back to a crisp point, which is an interpolated pixel in our case. In this

paper, we choose a center averaging defuzzifier defined by

z =

∑N
k=1 z̄k(µBk(z̄k))∑N
k=1(µBk(z̄k))

, (16)

where N is the number of rules and z̄k represents the point at which the fuzzy membership

function µBk achieves its maximum value. Note that the structure of (16) matches the require-

ments of (7) and (8). Fig. 3 shows an example of the inference process for the one-dimensional

case. The fuzzy sets in the consequent part are set to be singleton fuzzy sets in this case. In

this example, the gradient magnitude |f ′(x+ ∆)| is smaller than |f ′(x)| because the width of

the membership function µF21 is larger than that of µF11 . The inference process is indicated

by the dashed lines in this figure. We can conclude from the output fuzzy set µB that the

interpolated sample at x + ∆/2 should have a value closer f(x + ∆), the one with a smaller

gradient magnitude.

We compare the step response of this method with those of the conventional inter-

polation methods in Fig. 4, an example of factor-of-8 interpolation. We apply the fuzzy

interpolation process 3 times to produce the final zooming image; the input signal at each

step is zoomed only by a factor of 2. Different from the shift invariant linear interpolator, the
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fuzzy interpolator is nonlinear and local signal dependent. Our experiments indicate that the

iterative interpolation process described in the above produces better results than inserting 7

interpolated points between two given samples directly. It can be seen from this figure that the

high-contrast intensity jump is preserved by the fuzzy inference method. The parameters α

and β in (12) control the shape of the Gaussian membership function and thus have an impact

on the final results. When properly selected, different (α, β) sets produce similar results as

shown in this example. For a zooming factor of 2, if α is set to zero, the interpolation results

of the fuzzy method would be the same as those of the bilinear method. Alternatively, if the

shape of the membership function is chosen to be triangular and the width is intentionally set

to 2 ·∆, the fuzzy method would also degenerate into the bilinear method.

3 DIGITAL IMAGE INTERPOLATION BASED ON FUZZY

INFERENCE

We now extend the one-dimensional (1-D) interpolation method described in the previ-

ous section to the two-dimensional (2-D) case. Applying the fuzzy inference method to every

to-be-interpolated sample point is costly in computation, because the fuzzy inference process

requires much more calculations than the bilinear interpolator. Instead, we analyze the image

local characteristics and apply the fuzzy interpolator only to the points that cannot be han-

dled well by the bilinear interpolator. For example, in the smooth image regions, nearly no

difference can be found between the interpolated samples generated by the bilinear and the

fuzzy methods. Using bilinear interpolation method in these regions can save computations

drastically because typical images contain large smooth regions.

Our fuzzy image interpolation method consists of two steps: (1) classify a quadrant set

based on its gradient magnitudes; and 2) apply either the fuzzy or the bilinear interpolation

to a quadrant set according to its assigned class.
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3.1 Quadrant Set Classification

As mentioned earlier, a quadrant (pixel) set P is a set of four near-by pixels located on

a square. We first calculate four directional gradients using the horizontal (H), vertical (V),

diagonal (D) and anti-diagonal (A) 3×3 compass operators [23]:

(H)




−1 0 1

−1 0 1

−1 0 1




(V )




−1 −1 −1

0 0 0

1 1 1




(D)




−1 −1 0

−1 0 1

0 1 1




(A)




0 −1 −1

1 0 −1

1 1 0



.

These four directional gradients for each sample grid point in the quadrant set P are denoted

by gH(i), gV (i), gD(i) and gA(i), where i = 0, 1, 2, 3 represents the four pixel locations shown

in Fig. 1b. Hereafter we use these directional gradients to classify the quadrant set. The

classification algorithm is described below.

If |gH(0)| < Ts and |gV (0)| < Ts and |gD(0)| < Ts and |gA(0)| < Ts

then P is smooth

else if |gV (0)| > λ · |gH(0)| and |gV (1)| > λ · |gH(1)|
then P is horizontal

else if |gH(0)| > λ · |gV (0)| and |gH(2)| > λ · |gV (2)|
then P is vertical

else if |gA(0)| > λ · |gD(0)| and |gA(3)| > λ · |gD(3)|
then P is diagonal

else if |gD(1)| > λ · |gA(1)| and |gD(2)| > λ · |gA(2)|
then P is anti-diagonal

else P is rugged.

The threshold value Ts affects the percentage of the quadrant sets (in an image) that are
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classified into the smooth class. The multiplicative parameter λ has an influence on the

decision of the quadrant set orientation. The quadrant sets that do not satisfy the smooth and

the directional orientation criteria are assigned to be the rugged class. To see the effects of Ts

and λ, we apply this algorithm with different parameter values to three 256×256 images: Lena,

Baboon and Pepper. The results are shown in Table 1. Obviously, increasing the threshold

value Ts increases the percentage of the smooth set. Decreasing the multiplicative parameter

λ increases the percentage of the directional sets. Proper values of these parameters should be

chosen to keep a balance between reducing computations and maintaining good interpolation

results. For these test images, we found that Ts = 40 and λ = 2 can produce satisfactory

results.

3.2 Quadrant Set Interpolation

According to its assigned class a quadrant set is interpolated in different manner as

defined by Fig. 5. The lines indicate which original pixels are used to generate the interpolated

pixel in-between. The interpolated pixel on the dashed lines is produced after all its reference

neighbors have been computed. The triangle in Fig. 5 represents the pixel generated by the

bilinear interpolator and the square denotes the pixel generated by the fuzzy interpolator.

In general, the simple bilinear interpolation method is employed when the to-be-interpolated

pixel is located parallel to the detected orientation; otherwise, the fuzzy method is applied

to preserve the intensity contrast. The details of the interpolation scheme in each case (for a

factor-of-2 in each axis) are described below.

Smooth Class

As shown in Fig. 5a, the three to-be-interpolated pixels are all interpolated by bilinear

interpolation. In the smooth regions, using either the bilinear or the fuzzy methods does not

make noticeable difference; hence, the bilinear method is used to save computation.
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Horizontal and Vertical Classes

The intensity variation along the detected edge orientation is small for the directional

quadrant sets. The to-be-interpolated pixel located on the detected orientation line can thus

be well interpolated by the bilinear method using the neighboring pixels along the same

direction. As shown in Fig. 5b, the upper triangle pixel is produced by bilinear interpolation

using its two horizontal neighboring pixels. For the three to-be-interpolated pixels located on

the center line, no original pixel is available for interpolation along the detected direction. To

preserve the intensity contrast, we first apply the 1-D fuzzy inference method to generate the

two square pixels in Fig. 5b. Then the bilinear interpolation is applied to generate the center

pixel. The horizontal edge characteristics is thus well preserved. Similarly, the vertical class

quadrant sets are interpolated as indicated in Fig. 5c.

Diagonal and Anti-diagonal Classes

Base on the same reasoning given in the preceding paragraph, the center pixel in

Fig. 5d is produced by the bilinear interpolator using the two diagonal original pixels. On

the other hand, there is no original pixel available along the diagonal direction to produce the

square pixels. Thus, the 1-D fuzzy method is applied to preserve the intensity contrast. The

anti-diagonal case is similarly derived as shown in Fig. 5e.

Rugged Class

For those quadrant sets that are identified as the rugged class, all the to-be-interpolated

pixels are generated by the fuzzy inference method. The two interpolated pixels located on

the upper line and the left line are generated by the 1-D fuzzy method as before. Because

of the low correlation among the four original pixels, the center pixel is generated using all

the four pixels located on the two dimensional grid as shown in Fig. 5f. The 1-D fuzzy

interpolation method now needs to be extended to the 2-D space. The rule base of the 2-D
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fuzzy interpolation method consists of the following 4 rules:

Rule(1) : IF (r1, r2) is proximate to (x, y) THEN p(r1, r2) is P (x, y);

Rule(2) : IF (r1, r2) is proximate to (x+ ∆, y) THEN p(r1, r2) is P (x+ ∆, y);

Rule(3) : IF (r1, r2) is proximate to (x, y + ∆) THEN p(r1, r2) is P (x, y + ∆);

Rule(4) : IF (r1, r2) is proximate to (x+ ∆, y + ∆) THEN p(r1, r2) is P (x+ ∆, y + ∆).

(17)

A fuzzy inference engine similar to that in Fig. 3 can thus be constructed. In determining

the σki of the membership functions for the two antecedent parts, instead of setting them

separately, we now have

σk = α ·D(r̄k1, r̄k2) + β, (18)

where k is the rule index and D(r̄k1, r̄k2) is the average of the two directional gradient mag-

nitudes at P (r̄k1, r̄k2) along the horizontal and the vertical axes. Similar to the 1-D case, the

product-operation rule is adopted in the fuzzy inference. A graphical display of the 2-D fuzzy

membership functions is shown in Fig. 6.

Based on the choices we have made earlier, the interpolated pixel p(x + δx, y + δy) is

computed by the defuzzification process [22]:

p(x+ δx, y + δy) =

∑1
m=0

∑1
n=0 P (x+m∆, y + n∆) · wmn(δx, δy)∑1

m=0

∑1
n=0 wmn(δx, δy)

,

0 ≤ δx, δy ≤ ∆, (19)

where P (x + m∆, y + n∆) is the given pixel intensity value on the sampling grid before

interpolation. For the center pixel in the quadrant set, δx = 1
2
∆ and δy = 1

2
∆. The function

wmn(δx, δy) is a location dependent 2-D Gaussian membership function as described below.

wmn(δx, δy) = exp(−(δx −m∆)2 + (δy − n∆)2

ρ2
mn

), m, n = 0, 1 (20)

where ρ00 = σ1, ρ10 = σ2, ρ01 = σ3 and ρ11 = σ4; σk is derived from (18).
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4 SEGMENT MATCHING METHOD FOR IDENTIFYING

EDGE ORIENTATION

Though the proposed interpolation method based on fuzzy inference preserves reason-

ably well the edges in the horizontal, vertical, and diagonal directions, it cannot retain the

edge integrity of the highly oblique edges, edges with sharp angles. Because only 4 neighboring

pixels are used in computing the interpolated pixels (as shown in (19)) and a square region

of 4×4 pixels are involved in computing the four gradients (when the 3×3 gradient operators

are in use), we do not have sufficient information to determine the precise edge orientation;

therefore, highly oblique edges are often approximated by the horizontal or vertical edges. For

the same reason, the ordinary small size edge detectors such as the 3×3 Sobel operator fail to

identify the correct edge orientations of the highly oblique edges. An example is illustrated

by Fig. 7, where the large circles are the given original pixels and the small circles are the

interpolated pixels. Ideally, the middle line pixels enclosed by the dashed-line box should

be interpolated using the four pixels marked by the triangles. However, some of the marked

pixels are outside the quadrant set. Hence, it is difficult, if not impossible, to synthesize those

middle line pixels using only the original pixels inside the quadrant set. The challenge thus

becomes how to detect the correct orientation of the highly oblique edges.

Examining the characteristics of the highly oblique edges in images, we develop a

spatial domain matching algorithm to identify the edge orientation. After the edge orientation

being identified, the interpolated pixels can then be synthesized along its detected orientation.

Combining this technique together with the fuzzy-inference based interpolator, highly oblique

edges can be recreated without noticeable artifacts.

4.1 Edge shadowing effect due to lowpass filtering

The sampling process is essential to generate digital images. An anti-aliasing lowpass

filter [24] is usually applied to analog images before sampling to avoid aliasing. In addition,

typical image sensing devices such as camera also behave like lowpass filters. As a result,
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the original high-contrast edges (with intensity discontinuities) are blurred due to lowpass

filtering.

Fig. 8 shows the smoothing effect due to low pass filtering on the high-contrast edges

with different orientations. The right-hand side figure also demonstrates an orientation iden-

tification method for the highly oblique edges. Edges are divided into two classes according

to their orientations: the horizontally dominant and the vertically dominant classes. For ex-

ample, in the left figure of Fig. 8, the angle of the lower right edge is less than 45 degrees and

thus this edge is classified as the horizontally dominant edge. It is shown that two horizontal

line segments 5 pixels apart have almost the same intensity profiles (enclosed by rectangular

boxes). In our algorithm, we only examine the horizontal or the vertical profile of an edge.

Another example is the upper left edge, whose angle is greater than 45 degrees and thus it

is a vertically dominant edge. The third edge in the middle is a diagonal edge with a nearly

45-degree angle and thus it is not a highly oblique edge. It can be processed by the method

described in Sec. 3.

4.2 Segment shift matching

Most edge preserving interpolation methods consist of two steps: i) edge detection and

tracing, and ii) pixel interpolation along the orthogonal direction to the estimated edge with a

contrast enhancement scheme [8, 9, 12, 25]. In the first step, highly oblique edges are usually

difficult to detect using small-size edge detectors. Though an operator with a larger window

size can be used [26, 27], the number of pixels involved increases significantly and thus the

detection algorithm becomes very complicated. Therefore, we propose a simple yet effective

edge orientation identification method for, particularly, the highly oblique edges.

First, we determine whether an edge exists or not and then identify the dominant ori-

entation if an edge indeed exists. Local operators such as the smoothed gradient (Prewitt)

or the Sobel gradient operators can be used to detect edges. However, for the goal of detect-

ing highly oblique edges, we found the following two small-size local gradient operators are

sufficient.
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We apply the above gradient operators to an image and calculate the gradient vector, ~g(x, y) =

(gh(x, y), gv(x, y)), x, y ∈ Z. An edge is detected if the gradient magnitude |gh(x, y)| > Tg or

|gv(x, y)| > Tg, where Tg is a pre-selected threshold value. We then determine the dominant

edge orientation. If |gh(x, y)| > |gv(x, y)|, the edge is vertically dominant; otherwise, it is

horizontally dominant.

In the second step, we try to identify the accurate edge orientation by shifting two

line-segments around the detected edge and compare their profiles. If an edge is horizontally

dominant, we create two line-segments: L1k1 = {P (x + (k1 −M)∆, y), P (x + (k1 −M +

1)∆, y), · · · , P (x + (k1 + M)∆, y)}, and L2k2 = {P (x + (−k2 −M)∆, y + ∆), P (x + (−k2 −
M + 1)∆, y + ∆), · · · , P (x + (−k2 + M)∆, y + ∆)}, in which k1 and k2 define the relative

locations of these two segments and P (x, y) denotes the intensity value of the pixel at location

(x, y). The initial values of k1 and k2 are K1 and K2, respectively. These two parameters

decide the search range K (= K1 + K2) and M is a constant that determines the segment

size, 2M + 1. Similarly, vertical line-segments can be created for vertically dominant edges.

Let Lik(j) represents the jth components in the line-segment Lik. We first compute the line-

segment pointwise difference dk=(k1+k2)(j) = L1k1(j) − L2k2(j), and its maximum absolute

value

ak = max
j
{|dk(j)|, j = 1, 2, . . . , 2M + 1}. (21)

Although the sum of squared difference is another possible measure for matching, absolute

difference is much easier for computing and is less vulnerable to intensity offset (dc shift)

which may occur on the rim of an edge. If ak < Ta, we add the index k = (k1 + k2) to

the (matching) candidate set Q. Threshold Ta decides a match and its value is empirically

selected. Repeat the above procedure by shifting the line-segment one pixel inward from one
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side of an edge alternately; that is, one of k1 or k2 is decreased by one at each iteration.

As shown in Fig. 9, after the candidate set Q is produced, two tests are designed to

single out the best matching index in Q. Firstly, based on our knowledge of image processing,

if two neighboring line segments locate on the rim of the same edge, their pixel intensities are

often contiguous without abrupt intensity change. The so-called edge connectivity test is thus

devised to eliminate some fake matching line segments in Q. The surviving (passed the test)

indices are collected in the set Qec. Secondly, an edge is usually longer than a few pixels; that

is, the edge orientation should be continuous for several pixels. An edge continuity test is

thus devised to further eliminate some more disqualified candidates in the set Qec. If the final

Qec contains more than one elements, the one with the smallest shift is then chosen to be the

detected orientation vector, ~s(x, y). This vector is then used for interpolating the detected

highly oblique edge. If no candidate can pass through both tests, we assume that this is not a

highly oblique edge. The details of these two tests are described in the following subsections.

4.2.1 Edge Connectivity Test

To determine the correct edge orientation, we examine all the candidates in set Q. If

Q is an empty set, it implies that no strong edge orientation presents. Otherwise, for every

horizontally dominant edge candidate in Q, we create two arrays which contain all the pixels

within the extends of the two horizontally matched segments. Similarly, two vertical arrays

are formed if the edge is vertically dominant. Fig. 10 is an example used to illustrate the edge

connectivity test.

In Fig. 10a, two vertical pixel arrays are displayed on the left-hand side. The matched

line segments are enclosed by dash line boxes. To examine the connectivity, we first threshold

the pixel values of these two arrays to extract their profile patterns. This threshold value is

determined by the image data in these two line segments:

Tk=(k1+k2) =
1

2
·
(

max
i,j
{Lik1(j), Lik2(j)}+ min

i,j
{Lik1(j), Lik2(j)}

)
, (22)

where i = 1, 2 and j = 1, 2, . . . , 2M + 1. The extracted profile patterns are displayed on the



Draft: July 9, 1997 22

right-hand side of Fig. 10a. Here, ”1” indicates its pixel intensity is greater than Tk, and

”0”, otherwise. To determine whether the two matched line segments are connected, a simple

graph tracing algorithm [28] is applied. The basic concept here is that the distribution of

large and small pixels in both line segments should show similar pattern and one is roughly

the shifted version of the other. In Fig. 10a, all the thresholded pixels in the line segments

can be connected by the traces indicated by arrowed lines. Consequently, this edge candidate

is included in the survival candidate set Qec, the collection of the edges passing through the

connectivity test. Fig. 10b is an example that fails because there exists an intensity gap in

these two pixel arrays, and thus it is removed from Qec.

4.2.2 Edge Continuity Test

Typically, edges are composed of samples of high contrast and these samples have

similar edge orientation vectors; that is, the orientation vectors should not change their di-

rections abruptly along the edges [29]. Therefore, the survival indices in Qec that passed the

connectivity test are further examined. If the two matched line segments corresponding to

a specific survival index are separated by N pixels, the orientation vector ~s(x, y) is (N, 1)

for the horizontally dominant edges and (1, N) for the vertically dominant edges. Assuming

the current interpolation position is ~l = (x, y), we examine the cases at locations (~l + ~s) and

(~l−~s). If an edge having an orientation vector close to ~s is detected at one of the two locations,

the orientation vector ~s(x, y) is assumed to be valid and its corresponding index is retained.

Only one-direction edge continuity is sufficient because edges (such as corners) may not have

contiguous orientations in both directions.

4.3 Highly oblique edge interpolation

After determining the orientation vector of a highly oblique edge, we then modify the

interpolated pixels generated by the fuzzy-inference method along the orientation vector. We

simply use the bilinear interpolation to produce the new interpolated pixels around a given

pixel P (x, y). Because the gradient along the highly oblique edge orientation is small, the
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bilinear interpolation does not introduce noticeable blurring. Let the coordinate of the target

sample be (x, y). The orientation vector is either ~s = (N, 1) or ~s = (1, N) depending on the

detected edge is horizontally or vertically dominant. For a horizontally dominant edge, the

interpolated pixels are replaced by

p(x+
c

2
∆, y +

1

2
∆) =

1

2
[p(x+

c+N

2
∆, y) + p(x+

c−N
2

∆, y + ∆)], (23)

where c is the (relative) location of pixels to be modified. The value of c ranges from −2M to

2M if N is even, and from −2M−1 to 2M−1 if N is odd. Note that 2M+1 is the line segment

size. Also note that p(x, y) on the right-hand side of (23) represents the interpolated pixel

intensity values using the fuzzy inference interpolation. Fig. 11 illustrates the pixel locations

used in (23) for a zooming factor of 2. The upper portion is an example that N is even,

and the lower portion is odd. Similar process is used for a vertically dominant edge. This

interpolation process can be extended to higher zooming factors by modifying (23) slightly.

5 EXPERIMENTAL RESULTS

Two types of images have been tested using the proposed spatially adaptive fuzzy

interpolator combined with the segment matching technique. They are classified based on

the characteristics of high contrast edges: i) graphics images with intensity discontinuity, and

ii) natural images with/without anti-aliasing filtering. In computer synthesized images, edge

intensities may be discontinuous and free from edge shadowing effect. On the other hand,

edges in most natural images have shadowing effect (low-pass filtered). Furthermore, we also

interpolate images that are subsampled without pre-filtering to show the robustness of our

method. The following simulation results are all tested using the same set of parameters

summarized in Table 2.

The choice of the parameters, Ts and λ have already been discussed in Section 3.1.

Other than increasing the computational burden, lowering Ts or increasing λ does not affect

the results significantly because the increased rugged sets can be well interpolated by the

two-dimensional fuzzy method. The parameters α and β control the shape of the Gaussian
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membership functions whose widths are determined by the local gradients. The sharpness of

the high contrast edges would be reduced if the magnitudes of α and β are increased. The

values we use seem to be adequate for typical images. The line segment size is empirically

chosen to be 5 pixels (i.e., M = 2) in our experiments. The edge profile can not be reliably

extracted if the segment size is too small. On the other hand, increasing its size not only

increases the risk of covering two nearby edges but also increases calculations. The search

range K determines the maximum detectable orientation angle. A large K (K > 10) may

slightly improve the performance but the computation complexity is increased (proportional

to K). Parameter Tg is used to detect the existence of an edge. It can vary from 0 to 50

without affecting the interpolated image quality for all the test images. If Tg is greater than

50 the probability of missing an edge increases and the jaggy artifact becomes noticeable. A

Tg around 20 is found to be a good compromise between the computational burden and the

probability of missing an edge. Similarly, Ta determines the matching criterion of two line

segments. The Ta value ranges from 30 to 60 is found to be satisfactory for all the test images.

Thus, Ta = 50 is chosen in our experiments. Lowering Ta (smaller than 30) increases the

probability of missing an edge and then the jaggy artifact becomes visible.

Three interpolation methods are compared. They are (a) cubic spline interpolation

[5] with a = −0.5; (b) median filter based method (INTER1 scheme in [30]); and (c) our

proposed adaptive fuzzy method combined with segment matching technique.

5.1 Graphics images with intensity discontinuity

To investigate the effect of our proposed interpolation method on the synthesized im-

ages, we generate two test images using computer graphics tools. The first synthesized image

is a “Chinese Character”. This image is originally bi-level (0 and 255). It contains many

highly oblique edges. The original image size is 32 × 32 pixels. The zooming factor is z = 16

for each direction. The results using three different methods are shown in Fig. 12. The original

image is displayed in both the original small size and the enlarged version by pixel replication.

The blurring and the jaggy artifacts can be found in the images interpolated by methods (a)
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and (b). In contrast, the edge sharpness and integrity are well preserved using our proposed

method.

The second synthesized test image is the “Shapes and Text”. This image contains

texts (with and without shading), geometric shapes (sphere and right-angle corners) and high

contrast textures. The original image size is 64 × 64 pixels. As shown in Fig. 13b-c, zooming

artifacts are clearly observed in the interpolated images produced by the first two methods

with a zooming factor z = 8. On the other hand, the intensity contrast and the curvature

of the objects are well preserved by our method in Fig. 13d. The nearly only noticeable

distortion produced by our method is the eroded right-angle corners in the letter “B”. This is

due to the assumption that if three pixels of a quadrant set have similar intensity, the middle

interpolated has an intensity close to the majority. As a result, the middle interpolated pixel

is always assigned the gray color and thus the right-angle corners are eroded. If synthesized

images are our target images for interpolation, techniques can easily be developed to detect

right-angle edges and this problem can be fixed. However, this situation does not occur for

most natural images that have shadowed edges.

5.2 Natural images with/without anti-aliasing filtering

Because of the Nyquist sampling criterion and the lowpass nature of image capture

devices, the edge shadowing effect is almost always observed on the high contrast edges of the

natural images. Two natural images are used to compare the performance of the aforemen-

tioned interpolation methods. The first test image is “Lena” with a resolution of 256 × 256

pixels. This image is produced by subsampling the original “Lena” that has the resolution of

512 × 512 pixels. Before subsampling, the original image is filtered by a lowpass FIR spatial

filter to reduce aliasing effect. The tap coefficients and the frequency response of this FIR

filter are shown in Fig. 14. This lowpass filter is widely used in MPEG-1 [2] and MPEG-2 [3]

specifications for image size conversion.

The percentages and the number of the detected edge pixels are summarized in Table 3.

The percentages of highly oblique edge pixels are relatively small. We list the mean squared
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errors (MSE) of the three methods in Table 4. Although both the cubic spline and the

median based interpolation produce less mean squared error than our method, the jaggy and

the blurring artifacts in their images are much more visible, particularly along highly oblique

edges. It is well-known that MSE does not completely agree with human subjective evaluation.

In this specific case, our method often produces good visual quality edges but their locations

may be shifted slightly. Hence, there may be fewer pixels in error, but the differences (error

values) are larger comparing to those of the cubic spline interpolation. The MSE measure

gives a much higher penalty on large errors. Hence, although the cubic spline and the median

based interpolation may make mistakes in many pixels but the average differences are smaller.

Therefore, our scheme has a slightly higher MSE value. To have a close-up examination of

the image quality, we clip a portion of the original image and interpolate this clipped image

(64 × 64 pixels) with z = 8. The results are shown in Fig. 15b-d. It is clear that the edges

are preserved quite well by our method even when the zooming factor is as large as 8 in each

direction.

A second image, “Baboon”, of size 256 × 256 is examined. This image is derived from

filtering and subsampling the original 512 × 512 image. It contains rather complex texture

patterns. We also clip a portion of the original image and interpolate this clipped image (64

× 64 pixels) with z = 8. A long and thin hair crosses this clipped image. The simulation

results are shown in Fig. 16b-d. Again, our approach clearly preserves the edge sharpness and

integrity, better than the cubic and the median based methods.

To further verify the robustness of our method, we interpolate the images which were

subsampled without using an anti-aliasing filter. As we know, aliasing appears if the original

signal contains frequency components higher than half of the subsampling rate. The aliasing

effect is visible around the high contrast edges. In general, these aliasing components degrade

the interpolated image quality quite significantly when the conventional methods are in use.

For illustration purpose, we first subsample the 512× 512 “Pepper” image down to 256× 256

pixels without pre-filtering. We also clipped a portion of the aliased image (64 × 64 pixels)
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and interpolate it with z = 8. It is again clear from Figs. 17b-d that our method preserves

the shape and intensity contrast of the peppers better. This result indicates that our method

is still effective even when the source images contain aliased components.

Finally, we like to comment on the average computational complexity of our scheme.

Roughly speaking, if the computing time of the cubic spline interpolation is denoted by u

(the bilinear interpolation has a similar value), the gradient computation, quadrant set clas-

sification and fuzzy inference require totally around 3u to 4u computing time. The segment

matching and the highly oblique edge interpolation further consume about 2u to 5u comput-

ing time depending on the image content. For example, image “Baboon” contains a lot of

sharp edges and thus costs about 5u computing time. It is possible, however, to investigate

methods that could reduce the computation of our scheme.

6 CONCLUSIONS

The ordinary image interpolators often try to preserve faithfully the frequency spectrum

of the subsampled images. Hence, the interpolated images lack high frequency components

and appear blurred. In addition, their interpolation process is often split into two independent

sub-processes: one along horizontal axis and the other, vertical axis. The resultant off-axis

edges are thus jagged. There are two major contributions in this paper. The first one is the

fuzzy-inference based method that includes image diagonal correlation and matches image

local characteristics. Therefore, it can recreate the high-contrast edges in the interpolated

images. However, the fuzzy-inference interpolation still can not remove edge jaggedness at

the highly oblique edges. Our second contribution is to develop a segment matching technique

that identifies the correct orientation of highly oblique edges and performs interpolation along

the edge orientations. Combining these two techniques, we can improve the interpolated

image subjective quality dramatically because the most evident improvement comes from the

high-contrast edges that are sensitive to our eyes.
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TABLE 1 Percentages of classes of three test images with (1) Ts = 40 and λ = 2, (2) Ts = 80

and λ = 2, (3) Ts = 40 and λ = 1.

Image Lena Baboon Pepper

(1) (2) (3) (1) (2) (3) (1) (2) (3)

smooth 63.7 79.4 63.7 28.2 56.1 28.2 65.6 81.1 65.6

horizontal 3.0 1.7 7.0 13.0 9.9 25.9 6.6 4.0 11.7

vertical 15.4 9.3 22.5 11.5 7.4 23.4 10.5 6.4 17.1

diagonal 6.8 4.1 3.2 6.6 4.1 6.4 5.1 3.2 2.3

anti-diagonal 2.5 1.5 1.4 5.8 3.4 5.3 3.5 1.6 1.5

rugged 8.6 4.0 2.2 34.9 19.0 10.8 8.6 3.7 1.8

TABLE 2 Parameters of our scheme in simulations.

Classification Fuzzy Segment Matching

Ts λ α β M K Tg Ta

40 2 -0.16 0.2 2 10 20 50
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TABLE 3 Percentages of detected highly oblique edges.

Image (256× 256) Lena Baboon Pepper

horizontally dominant 2.7% 5.6% 2.4%

(1773) (3671) (1571)

vertically dominant 5.5% 5.3% 3.2%

(3576) (3498) (2073)

TABLE 4 Mean squared errors of the interpolated images.

Image Lena Baboon Pepper

pixel replication 104.3 472.1 136.2

bilinear 26.6 289.8 46.3

cubic spline 25.5 277.0 45.3

median 26.0 291.2 44.9

our method 34.2 291.1 56.2



Draft: July 9, 1997 33

P(x,y) P(x+∆,y)

P(x+∆,y+∆)P(x,y+∆)

p(x+∆/2,y+∆/2) p(x+∆/2,y+∆/2)

P(x,y)

∆

∆

(a) (b)

0 1

2 3

FIG. 1. Image interpolation results of (a) linear separable operations and (b) nonlinear

operation using diagonal correlation on a quadrant set.
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FIG. 2. Block diagram of a fuzzy logic system.
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FIG. 3. An example of the fuzzy inference used for interpolation.
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FIG. 4. Step response comparison of different interpolation methods.
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FIG. 5. Quadrant set interpolation schemes for (a) smooth, (b) horizontal, (c) vertical, (d)

diagonal, (e) anti-diagonal and (f) rugged quadrant set classes.
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FIG. 6. Two dimensional Gaussian shape membership functions.
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FIG. 7. Limitation of local operations for interpolating on highly oblique edges.
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FIG. 8. Edge shadowing effect due to low pass filtering.
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FIG. 11. Highly oblique edge interpolation.
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FIG. 12. “Chinese Character”, z = 16: (a) original image (32 × 32); (b) cubic spline; (c)

median; and (d) our method.
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FIG. 13. “Shapes and Text”, z = 8: (a) original image (64 × 64); (b) cubic spline; (c)

median; and (d) our method.
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FIG. 14. Anti–aliasing lowpass FIR filter: (a) tap coefficients; (b) frequency response.
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FIG. 15. “Lena”, z = 8: (a) clipped image (64 × 64); (b) cubic spline; (c) median; and

(d) our method.
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FIG. 16. “Baboon”, z = 8: (a) clipped image (64 × 64); (b) cubic spline; (c) median; and

(d) our method.
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FIG. 17. Aliased “Pepper”, z = 8: (a) clipped image (64 × 64); (b) cubic spline; (c)

median; and (d) our method.
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