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Predictive  Vector.  Quantization of Images 

Abstract-The  purpose of this  paper is to present  new  image  coding 
schemes  based on a predictive  vector  quantization’(PVQ)  approach.  The 
predictive part of  the  encoder is used t o  partially  remove  redundancy,  and 
the VQ part further  removes  the  residual  redundancy  and  selects good 
quantization  levels  for  the  global  waveform. Two implementations of this 
coding  approach  have  been  devised,  namely,  sliding  block PVQ and  block 
tree PVQ. Simulations on real images show significant  improvement  over 
the  conventional DPCM and tree codes using these  new  techniques.  The 
strong  robustness  property of these  coding  schemes is also experimentally 
demonstrated. 

€3 
I. INTRODUCTION 

Y predictive  vector  quantization (PVQ) we will mean a 
predictive tree  encoding in which  the ordinary  scalar 

quantizer  is replaced by a  vector quantizer  (VQ). Because 
typical images have  high correlation  over neighboring  pixels, 
they can be compressed by employing a  predictive  model  such 
as  DPCM  and  tree  codes [ 11, [2]. However, since  a  real image 
is nonstationary in nature, a scalar  quantizer  together with a 
fixed structure  coding  filter  can only condense pictures to a 
certain  extent.  Vector  quantizers  help  improve the coding 
performance  because they quantize a  whole  block of data  and, 
thus,  can match  local image statistics better.  The  purpose of 
this paper  is  to  present new image  coding  schemes based  on 
the PVQ  concept.. 

Most of the  conventional image  coding techniques fall into 
two  categories:  predictive  coders and transform  coders [3]- 
[5]. Conceptually, these coding  schemes  have  two stages: 1) 
remove the source signal  redundancy  which does not provide 
useful information, and 2) select “good” representatives 
which  contain the essential  information for reproduction of the 
original signal. Both  predictive and  transform techniques  try to 
achieve  the  first goal-removing signal  redundancy. ,For 
continuous-amplitude waveforms, the  selection of representa- 
tives is  performed  either by quantization or other  coding 
techniques such  as  random  tree  codes.  Our  coding  schemes 
will follow the  direction of the  second category: using an 
encoding  filter  to  remove  the predictable  redundancy of the 
source  signal. 

Rate  distortion theory  indicates  that  a  well-defined  signal 
source  can  be  compressed closely to the  rate  distortion bound, 
provided  that the  coding block  length is  large enough [6]. 
From  this  viewpoint, conventional DPCM  has the drawback 
that  its predictor only uses the  past  information to  remove 
redundancy and  its  quantizer only operates on  a  single  pixel.  A 
predictive tree  code  is  thus introduced by adding a  delayed 
decision feature which makes  use of the  nearby future  data [7], 
[8]. The  tree  code  is then further  improved by replacing  the 

Paper approved by the Editor for Signal Processing  and Communication 
Electron@ of the IEEE  Communications Society. Manuscript received June 
4, 1984; revised April 3, 1985.  This  paper was presented in part at the 18th 
Annual Conference  on Information Science and Systems, Princeton Univer- 
sity,  Princeton,  NJ,  March  1984. 

H.-M. Hang was with the Department of Electrical,  Computer, and 
Systems  Engineering,  Rensselaer Polytechnic Institute, Troy, NY 12181. He 
is now with AT&T Bell Laboratories,  Holmdel. NJ 07733. 

J .  W. Woods is with the Department of Electrical,  Computer,  and Systems 
Engineering,  Rensselaer Polytechnic Institute,  Troy, NY 12181. 

scalar quantizer with . a  vector quantizer, resulting in a 
predictive  vector  quantizer. 

From the  quantizer’s  point of  view,  PVQ  can  be regarded as 
an extension of vector  quantization. This situation is analogous 
to  the  predictive quantizer-a different  name for  DPCM [ 11. 
The quantization  levels in a  predictive  quantizer are first 
biased by the  prediction filter and  then  used to quantize’  the 
source waveforms. Or,  equivalently, the  prediction errors 
rather  than  the  original  signals are quantized., 

Predictive tree  coding for I-D speech compression was 
successfully developed by Anderson and his  coworkers [7], 
[8]. This  approach  has  also been extended  to  image  coding [2], 
[9], [ 101 where  about 3 dB  SNR  improvement  over  DPCM 
was reported [2], [9], [lo]. 

On  the  other’hand, although  the  vector  quantizer  (block 
quantizer)  concept  has  been around  for a  long time [ 113, the 
theory of VQ  has  advanced rapidly  only in the  past  several 
years.  The  advantage  of using VQ  is  evident,  since  the usual 
scalar  quantizer  is a  special case of VQ with  length 1. 
Experimentally, the superiority  of  VQ  over  the  scalar quanti- 
zer was first reported by Buzo et al. for  low-rate  speech 
compression [ 121. Along the same  line,  VQ has  been  recently 
employed  to encode images [l 11. For  example,  Gersho  and 
Ramamurthi [13] proposed  a  method  which  classifies  pixels in 
an image  into several constituent groups  and then  applies VQ 
on each group.  This  approach was further refined and 
extended in [ 141 and [15]. Baker  and Gray introduced  a 
differential  vector quantizer which removes the mean of each 
image block  and  then  vector-quantizes  the  residual signals 
[161, 

Image  encoding using PVQ [19] i s  not a straightforward 
extension of the ordinary vector  quantization.  A  special 
implementation of 1-D  PVQ has appeared for speech  coding in 
Stewart et al. [ 181. But the full potential of the general  PVQ 
approach, especially its application to  images, has not been 
explored.  In  order  to  construct a code  tree on a compact 2-D 
region,  we  devised  a 2-D decision order which provides  an 
appropriate encoding sequence  for  2-D  tree  codes.  The  details 
of this ordering  can  be found in [20],  [26]. 

Several 2-D. PVQ  coding  schemes  are developed in this 
paper.  The original VQ concept  and prediFtive tree  codes will 
be  briefly  reviewed in Section 11. Two implementations of 
PVQ will then be presented in Section- 111. The significant 
coding  improvement  offered by these  techniques is  demon- 
strated by experiments in Section IV.  Some related problems 
such as sensitivity to the VQ  table.are  also discussed there. 

11. BACKGROUND 
In  order  to understand 2-D  PVQ,  some of the  necessary 

background  material  including the  concepts  of predictive tree 
codes,  vector  quantizers, and 2-D  search  ordering  are briefly 
reviewed in this section.  Our main  results will be presented in 
the  next  section. 

A .  Predictive Tree Codes 
A  predictive tree  code i s  a  special type of tree  code in which 

the branches  are generated by predictive  filters with  quantized 
inputs. In  other  words,  the  branch values in this tree  are  filter 
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outputs  excited by the  quantization levels. In practice,  to  locate 
good  paths (codewords) in a tree,  an instrumentable  search 
(nonexhaustive) technique must be  adopted.  We  have  chosen 
the (M, L )  search because of  its reasonably  good performance, 
synchronized transmission, and moderate computational com- 
plexity [2 I], [22]. The  parameter M indicates  the  maximum 
number of paths  retained at  each  tree depth  and L is the  delay 
or  search length  at  which  a  decision on the  released point is 
made. 

It had been  believed  that tree  coding performance would 
always improve by increasing  the  search  length. On the 
contrary, we  have  found .that when a  conventional (M,  L )  
search is used,  increasing  the  search  length can degrade coding 
performance due  to the near merging of paths phenomenon 
[IO]. Fortunately, this performance degradation for PVQ is 
much less than that of an  ordinary predictive tree  code.  This 
will be  shown in Section IV-A. 

1209 

B. Vector Quantization and Clustering Design Algorithm 
The  ordinary-scalar,  or one-dimensional,  quantizer is  an 

operator which converts a single  sample of an analog  signal  to 
one of a  finite number of representatives  (quantization  levels). 
In vector  quantization,  a  block of J samples is mapped  into one 
of a  finite  set of representative  vectors. An index that identifies 
this  representative is then sent out. 

An N-level,  J-dimensional  quantizer can  be  modeled as a 
mapping F from the  input J-dimensional space X = {x = (xI, 
. . * , xJ)}  to  a  finite  reproduction set Y = { y i :  i = 1, . . . , N}. 
Each  vector yi in Y is a J-dimensional  vector.  The mapping F 
is completely  characterized by the  partition {Pi: i = 1 ,  . . . , 
N }  in the  input  space X, which assigns  an input  vector x to the 
representative y j  if x E Pj .  The reproduction  set Y is also 
called  the VQ lookup table since the  index of y i ,  which is 
transmitted over the channel,  can  be regarded as  an address in 
a  table. 

Recently, a simple and  effective VQ design  algorithm was 
proposed by Linde et al. [23] as  an extension of a scalar 
quantizer  design scheme  due  to Lloyd. One attractive feature 
of this approach  is that it  does not require knowledge of the 
source statistics. The  parameters in the coding scheme are 
obtained by applying an iterative  algorithm on training 
sequences.  Additional details on this VQ design method 
including convergence  properties can  be  found in [23],  [24]. 
This coder design  algorithm will be extended to the  design of 
two-dimensional PVQ in Section 111. 

C. 2 - 0  Search Order 
A new problem for 2-D tree  coding which does not appear 

in 1-D is  to  decide the tree generating sequence, search order, 
inside  a 2-D region. In 1-D tree  coding,  there  is only one 
natural order  for  tree  searching, but  this is not the case  for 2-D 
signals. As discussed in [20] and [26], where search order is 
called decision order for  broader use,  we may define  several 
eligible  search orders on a 2-D region. The line-by-line  scan 
order is generally  permissible  and is called I-D-like search for 
its  similarity to I-D tree  search  order.  However, since our 
search is over a 2-D spatial  region,  a 2-D search order which 
attemps  to  minimize  the  redundancy in the code  tree will yield 
better  results, as will be  shown in Section IV-B. 

The construction of this 2-D order depends on both the  filter 
support  and  the search region geometry. In fact, the  shape of 
the  search  region also restricts  the  choice of filter  support for a 
causal  coding  process.  Although this 2-D order will be used in 
Section 111-B, because of limited  space  the  details of 2-D 
decision ordering  are relegated  to [20] and [26]. 

111. PREDICTIVE VECTOR QUANTIZATION 
The basic  idea of predictive  vector  quantization (PVQ) is to 

use  a  predictive  filter to  remove the  predictable  redundancy in 

the  data  and  then use a VQ to  encode  the prediction error.  We 
will show two implementations of PVQ in this  section, 
namely,.sliding block PVQ and block tree PVQ. 

A .  Sliding Block  Implementation 
Fig.  I-pepresents an ordinary sliding  block decoder in which 

the ui s are the  inputs to the  shift register, the qi’s are the 
outputs of the  decoder,  and, F is a time-invariant  mapping 
which  specifies  the  output  value 4;. Suppose the  shift  register 
is binary with length J; then the total number of possible  states 
of this machine is 2 J ,  i.e., the  mapping F has 2 entries. This 
mapping F can  thus  be viewed as a lookup  table, with the shift 
register  acting as  an  address  selector which  picks entries in the 
table to  form  the  outputs. In this way, the current output qi is 
determined by the  vector Ui = (u;, u;- I ,  * * - , ui- J +  I )  which is 
the  state of the  shift register,  where ui is the current input and 
ui- I ,  * e ,  ui- J +  I are the J -  1 previous inputs. Hence, the 
information  contained in the  previous data  can  be utilized to 
select  the best current output  value q i .  

We  can view Ui as  an index to the  vector  quantizer. At the 
time J ,  this index corresponds to  the  representation  vector QJ 
= ( 4 5 ,  4 5 - 1 ,  . . * , q l ) .  For i > J ,  we  simply  slide the block to 
the  right;  hence  the name  “sliding  block”  for this type of VQ. 
To quantize a sampled waveform, the saurce signal is 
compared against  all  the  quantization  levels  specified by the 
shift  register of which  the latest input  has two possible  values; 
the one with least  distortion is then selected. The  ordinary 
scalar  quantizer  can be  viewed as the  special case of this 
machine  which  only  contains one element in the  shift  register. 
Therefore, if we  choose the  mapping F properly, the perform- 
ance of VQ will always  be better than that of a scalar 
quantizer. 

We  can  also adopt  a  sliding  block structure  to implement 
PVQ, which  we  call sliding block PVQ (SBPVQ). The block 
diagram of a 2-D SBPVQ decoder  is shown in Fig. 2. The 
encoding filter in this  decoder is a  recursive  difference 
equation, 

;:*: 

s-(m, n) = cij * s - ( rn  - i, n - j )  + q(m,  n) 
i, j 

= c  0 SIo,d+q(m, n) ,  
i.e., the  reproduced  signals {$(-, .)} are filter  outputs driven 
by the  selected PVQ levels.  One of the  problems in applying 
this  scheme to a 2-D image  is the  selection of a  register  support 
for the  mapping F. Since  an image pixel is highly correlated 
with its neighbors, naturally  we  would choose a  compact 
region around the current point to  be  our register support.  For 
example, the  causal  region of  Fig. 3 could be the  support of 
the  register in Fig. 2. As we slide the  region of Fig. 3 
horizontally across the image, the current quantization  level 
(input to the  filter) is  determined by the  contents of the 
register,  i.e.,  the previous and current path map symbols. The 
encoding  filter  then  uses  this  quantization  level to generate  a 
reproducing pixel, f(m, n ) .  

We now turn to the encoder of SBPVQ. Usually the 
encoding process  is tedious  and  requires  a large amount of 
computation. An SBPVQ encoder can  be  thought of as running 
several decoders simuitaneously. Then it makes  a  delayed 
decision on the  released path map. This  procedure is best 
illustrated by an  example using  a  small  test  image as in Fig. 4.  
Fig. 5 shows  the code  tree generated by this  example. We start 
with pixel 1 ,  where all  the  pixels  before it are assumed  to be 
previously  released  pixels or boundary  values. A 1 bit/pixel 
quantizer w’ill be employed. 

Comment 1: Except  for the current pixel (with  index 7), all 
the  elements in the  register  support are fixed  boundaries. Since 
the current pixel can  have  two possible  path  values  (two-level 
quantizer),  two  branches  stem  out  at pixel 1, as seen in Fig. 5 .  

Comment 2: If the encoder  does not make a  decision at 
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Fig. 1. A sliding block channel decoder. 

Fig. 2.  A 2-D SBPVQ decoder. - 
m 
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Fig. 3. A.causal region' for the register in SBPVQ. 

I 
Fig. 4. A test image for SBPVQ 
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I 
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Fig. 5 .  A tree generated by an SBPVQ. 

pixel 1, it moves  the  shift  register  support,  to  the  next  pixel. 
There  are  four  branches  at  this  pixel.  The  first  two  are 
extended  from  the  first  branch,at pixel 1 by varying  the  most 
recent  input to  the  register.  Similarly,  the  other  two  branches 
come  from  the second  branch ,at pixel 1 .  Thus,  a,  code  tree  is 
constiucted. A search  algorithm  such as the (M, L )  algorithm 
can  then be used to  locate  good  paths  in  the  tree. 

Essentially,  an  SBPVQ  requires  about  the  same  amount  of 
computation as a  tree  code but  needs  an extra  register  and  a 
VQ table. The  complexities  of  a  few  predictive  coding 
algorithms  are  compared in Table I. One  important  issue in the 
design  of  an  SBPVQ  is  how  to  determine  a  "good"  VQ  table 
F. We  propose  an  iterative  approach based on  the  clustering 
algorithm  of [23]. In  order  to  describe  our  design  algorithm, 
we  need to  define  two  more  terms.  In  the  encoding  process, 
releasing  a  data  pixel is equivalent  to  selecting  an  entry  in  the 
VQ  table  for  that  pixel.  The  index  of  the  selected  entry will be 
called  the partition index associated  with this pixel. Also  the 
unquantized  prediction error (i.e., e(m, n) = s(m, n).- c 0 
&,id) ,will be called  the prediction error'associated with the 
released pixel. The  SBPVQ  design  algorithm  can then,  be 
described. 

SBPVQ Design Algorithm: 
Step I :  Initialization:  Start  with  some initial value  for F. 

For  example,  use  the  scalar  quantization  levels  derived  from  a 
predictive  tree  code  (so-called  product  VQ  codes in [ l l ] ) .  

Step 2: Coding:  Apply  the  above  encoding  procedure  to  the 
training  data,  i.e., i.ntroduce  a  minimum  .distortion  partition 
{ P I ,  * . a ,  P N }  on  the  test  image.  Store  the  prediction  error 
e(m, n), and  the  partition  index  of  each  pixel.  The  partition 
index  associated  with  a  data  point  is,  equivalently,  the  contents 
of  the  register  used  to  encode  that  pixel. 

Step 3: Updating F: Since  the  squared-error is used,  the 
new  quantization level of  index j is  the  average  of  all  the 
prediction  errors of partition  index j, i.e., 

where lPjl denotes  the  number  of  training  vectors in partition 

Step 4: Compute  the  distortion  and  .compare  it  to  the 
previous  distortion.  Stop if the  distortion  decrement  is  less 
than a prespecified  value.  Otherwise, go  to  Step 2.  

B. Block Tree Implementation 

Pj . . .  

The block tree implementation of PVQ  is  easy  to  appreciate 
in concept.  A  test  image  is  first  partitioned  into  small  blocks, 
and  then  predictive  tree  coding  is  performed  on  each  block. 
The  difference  between  block  tree  PVQ  and  a  tree  code  is that 
the  quantization  levels in the  former  are  vectors. 

Initially,  we  considered  ideal  block  PVQ  (full-searched 
PVQ)  which  has  a  full  size VQ  table  and  requires  an 
exhaustive  search.  Due  to  computational  consideration,  this 
scheme.  was  deemed  impractical.  Then we  imposed  a tree 
structure  on  the  VQ  table,  calling  the  new  algorithm block 
tree PVQ.  The idea  of  tree-structured  vector  quantizers  was 
first  proposed by Buzo et al. for  linear  predictive  coding 
(LPC) of speech [12]. ,However,  the  tree  search  technique 
used here  is  different.  The  tree-searched  VQ  table  in [12] and 
[25] is  a list of  vectors  organized  by  a  tree-like  framework, 
and  the  search  is basi'cally an  address  locating  procedure.  A 
node in that tree  is  the  representative  for  all  the  nodes (or 
branches)  extending  from  that  node.  Only  the  ultimate  leaves 
(nodes or branches  without  successors)  of  ,the  tree  are  used as 
code  vectors.,  On  the  other  hand,  we  follow  the  traditional 
sequential  tree  coding  approach.  to  construct  the  VQ  table. 
Every  tree  branch is a  part  of  a  code  vector.  A  complete  code 
vector  is  formed  by  concatenating  the  branch  symbols  along 
any  path in the  tree. 

The  structure  of,an ideal block  PVQ  decoder  is  shown in 
Fig: 6. The path map u from  the  channel  is  a  vector  containing 
an  address in the  VQ  lookup  table. An entry in the  VQ  lookup 
table is another  vector  which  is  a  sequence  of  quantization 
levels  used  to  drive  the  encoding  filter.  As  a  simple  decoding 
example,  consider  the test image in Fig. 7. At the  receiver,  the 
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TABLE I 
COMPUTATION AND STORAGE OF CODING SCHEMES 

__ 

Number of 

Calculated 

Storage for 

Storage  for 
VQ Table 

b - average  number of branches stemmed from one  node  in the trce 

L - number of delayed elements  in  the ( M . L )  search 
M - number  of  paths  retained  in  the 6U.L) search 
J - size  of  the  shift  register 
BLK - elements of one block 

va LOOKUP TABLE 

Fig. 6. An ideal block PVQ  decoder. 

13 14 35 

7 9 16 47 18 

Fig. 7 .  A test image for BTPVQ. 

quantization  vector q = {q,, q2, . . , q9} of a 3 x 3 block is 
selected by the path map symbol u.  Then, each  element qi 
passes  through  the  encoding  filter  and  yields  the  reconstructed 
signals gi sequentially. 

Since  the  block of this PVQ is a  compact 2-D  region, the 
search order  of elements  inside  a  block  should  follow  the 2-D 
search ordering defined in [20] and [26], there called  decision 
ordering.  Indeed,  the  I-D-like  search would yield a less 
satisfactory  result, as will be seen in Section  IV-B. The 
importance of search  order becomes  apparent  when  a  full- 
searched PVQ  is replaced by a  tree-searched PVQ.  The 2-D 
search  region also limits  the geometric  shape of the  encoding 
filter so that  the decoder is causally  realizable. For  instance, a 
nonsymmetric  half-plane filter cannot  be used with a  rectangu- 
lar block search region. 

At the  transmitting end, in order  to get  the best quantization 
vector for a  given block, ideally we  should  try all the entries in 
the VQ table  and  send out the one with the  least  distortion. If 
the  number of entries  in the VQ  table  is N, we  would  need N 
decoder  operations  to locate  the  best  quantization  level. For a 
typical image, this may be  impractical. For instance,  a VQ 
table for a 3 X 3 block and 1  bit/pixel  rate code contains 512 
vectors. To find the optimum  quantization vector, all the 
vectors in this VQ table have to  pass  through  the  encoding 
filter  and then all  the  reproduced vectors must  be  compared 
against  the source  signal.  This  search would require  512 
decoding  computations for each  pixel. 

The computational  problem of  an ideal block PVQ  can  be 
greatly  eased by imposing  a tree  structure on  the VQ  table,  as 

mentioned above, and  applying  the (M, L )  search  algorithm to 
the code  tree.  We call  this new scheme block tree PVQ 
(BTPVQ) . As illustrated by Fig. 8, the  VQ  lookup table now 
has  a tree  structure and a  path in .the tree  is the  quantization 
vector  identified by the  path map symbol u. If we  apply an (M, 
L )  search with M = 8 on the  test  image of Fig. 7,  the encoder 
only  conducts  2 x 8 or  fewer  decoder operations per pixel, 
which is much smaller  than  the 512 operations of the ideal 
block PVQ. 

Additionally,  the encoder  does not have  to  make  a  decision 
immediately  at  the end  of a  block. Instead, it can delay  its 
decision-making  and  thus take advantage of the dependence 
between  successive  blocks. For  example, the code  tree in the 
first  block of Fig. 7 can be  extended to the  second block,  and 
the encoder would then release  the  first  block after reaching 
the  end of the  second  block. In  other  words, the tree  structure 
inside one block would act  as a  substitute for a  full-searched 
table, and the delayed  decision feature can be  brought  in by 
allowing  the tree  to  grow continuously over several  blocks. 

The overall  delayed BTPVQ  coding  process  for  Fig. 7 with 
a 1 X 1-order quarter plane  filter would proceed as follows. 

Step I :  The level-1  elements in the tree-structured VQ table 
of Fig. 8 are used to  produce  image pixel 1. In this example, 
there  are  two branches  at tree depth  1 ; hence,  two correspond- 
ing 3,'s are  generated. When the (M,  L )  algorithm is  used, 
only the best M paths are retained for the  next  step. 

Step 2: Image pixels  2  and 4 are co-orderpoints, i.e., they 
are  encoded simultaneously. Hence, all  the  branches  at tree 
depth  2 of this VQ table are associated  with two quantization 
levels, one  for pixel  2  and  the other  for pixel 4. Although there 
are  four  entries  at  tree depth 2, only the  first two  are 
permissible if uI = 1  was  the  choice at level 1. These 
permissible  paths are  then  sorted and  retained by the (M,  L )  
algorithm. 

Step 3: The above  procedure continues until reaching pixel 9. 
Then it starts again using the  level-]  entries in the VQ table to 
encode pixel 10, while the newly generated branches are still 
attached to  the  surviving paths at pixel 9. A  delayed  decision 
will finally be  made on  the first  block  (pixels 1-9) at pixel 18. 

The  entire encoding procedure  for the BTPVQ  is thus quite 
similar to  that of an ordinary predictive tree  code.  The only 
change is that  a path is released  block by block rather than 
point by point. In fact, the  computation  and storage complex- 
ities of a BTPVQ  are  about the same  as those of an  ordinary 
tree  code plus  the  additional VQ table. These calculational 
requirements of BTPVQ and some  other schemes are given in 
Table I.  From this  point of view, the ordinary one-bit 
predictive tree  coder  can  be  regarded  as a  special case of 
BTPVQ  for which  the  block  size is 1 X 1  and  the  table size is 
2 x 1. 

It  remains to  describe the  design of the VQ table for 
BTPVQ.  Again,  an iterative  approach  similar  to  the one used 
for  SBPVQ was formulated.  The notation used in Section 111-A 
is followed here. 

BTPVQ Design Algorithm: 
Step I :  Initialization: Suppose that  the  initial VQ table is 

Step 2: Coding: Apply BTPVQ  to the  training image, 
known,  e.g., use  the scalar quantization  levels. 
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SEARCH 
ORDER: 

.I 

2 

3 

4 

5 

Fig. 9. (a) A 1 x 1-order  quarter-plane  filter. (b) A local 2-D search region. 
(c)  Search  order of (b). 

resulting in a minimum  distortion partition { P I ,  . . . , P N }  of 
the  training sequence.  The partition  index  associated  with each 
data block is  the path map in the code  tree used for that  block. 

Step 3: Updating  the VQ table: The new  quantization  level 
of a  branch in the VQ  tree  is  the  average value of all  the 
prediction errors associated with that branch. 

Step 4: Compute  the distortion  and compare it to  the 
previous distortion.  Stop if no further  improvement.  Other- 
wise, go to  Step  2. 

Since  the VQ  operation  is  performed  on  the whole  block 
rather than on a single  point, the number  of  branches  per node 
in the  tree  can  be  arbitrarily  chosen.  In the example of Fig. 7 
the 2-D search order of elements inside  a  block  would appear 
as  shown in Fig.  9(c).  The  code  tree of this VQ table  has  depth 
5, since  the  total search  order of one block is 5. If the desired 
average bit rate is 1 bit/pixel, then 9 bits are available to index 
the tree.  One possible arrangement  is  (1,  2, 3, 2, 1) bits per 
node, or equivalently (2 ,4 ,   8 ,4 ,  2) branches  per node. By this 
notation we  mean  two  branches  per  node  at depth 1,  four 
branches  per  node at depth  2, and so on. An alternative 
arrangement  is ( 2 ,  2,  2,  2, 1 )  bits per node.  It seems 
appropriate  to put more  freedom  at  the beginning of a tree, 
because the  later  part  of  the  tree search  will be constrained by 
the initial selections. Of  course,  other bit  allocation  patterns 
are  permissible.  More  generally, we can  also have  noninteger 
numbers, say 1.5 bits (three  branches)  per node. 

IV. SIMULATIONS 
All the following  simulations were run on 256 X 256  images 

with 8 bitdpixel  gray level. Two  images  were used:  a lady’s 
face  and  a  man’s face.  The channel  transmission  rate  was  set to 
1  bit/pixel. In fact, the entropy  of the  path map  derived  from 
the coding  schemes  was usually somewhat  less than 1 bit/ 
pixel. Therefore, these coding  algorithms  can be  realized on a 
constant  rate  channel with a  bit  rate equal  to or less than 1 bit/ 
pixel. The following  conventions have been  adopted: a) the 
global mean of the test image  is removed before encoding  and 
then is added  back after  decoding; b)  all  the  boundary  values 
used in the coding  process  are set to  zero; and c) the SNR of 
the  coded image  is defined to be  the  ratio of the  peak-to-peak 
signal  (255) to  the root  mean squared-error  for these  density- 
domain  images [5]. 

A .  SBPVQ 
The  encoding  filter  for  this  coder  is a  1 X 1-order 

nonsymmetric half-plane (NSHP) filter, with  coefficient support as 

I 
Fig. 10. A 1 X 1-order N S H P  model coefficient support. 

TABLE I1 
MODELS OF TEST IMAGES 

a l b l c l  
d l  

Nonsymmctric  Half-plane 
(NSHP) 

Quarter-plane 
(QP) 

Image  Coefficients 
(a,b,c,d) 

Estimation 
error  variance 

QP.  separable 

QP.  separable 
Man’s 

QP. least-quark I -5306, .79,  ,739 I 51.2 face 
I I 

T A B L E  111 
THE  DESIGN OF AN  SBPVQ (1 BITIPEL) 

Iteration I Search parameters I SNR (dB) 
1. I M- 4. L-10 I 26.3 

M- 4, L-IO 
M- 4. L-10 
M- 4, L-IO 
M- 8, L-20 30.9 
M- 8, L-20 30.9 
M-16, L-40 

shown in Fig. 10. The  filter coefficients were obtained by 
least-squares parameter estimation on the  test  image and are 
listed in Table 11. The rate of the  path map  (the input to the 
sliding  block  register)  was 1 bit/pixel.  This sliding  block 
register contains 7 bits in total, of which the last one  comes 
from  the  channel  and the  rest are picked from the  previous 
path map in a  local  region  defined in Fig. 3. The initial  values 
of the  mapping F in the  iterative  design procedure  were 
obtained from the  best ordinary predictive tree  code with  the 
same model but  a scalar  quantizer. 

The  “lady’s  face”  is the  training image  in this experiment. 
At the  beginning of the design process,  the (M, L )  search 
parameters  were M = 4  and L = 10 to  save computation. 
However,  as the SNR of the coded  image  increased,  higher 
search  intensities were found  necessary. At the  second  phase 
of the design, M was thus set to 8 and L to  20.  Finally,  an (M,  
L )  search with M = 16 and L = 40 was  used  without 
significant further  improvement.  These results are listed in 
Table 111. 

Another parameter involved in the  tree search is the  path 
separation  threshold factor THF incorporated to prevent the 
near  merging described in [lo]. In  the  above iterative 
procedure, this THF was 0.1, i.e., the branches retained in the 
search  must  be THF X Q apart,  where Q is  the initial 
quantization step  size. If this  path  separation  technique is not 
used,  the performance  degrades by a  certain amount. For 
example, if the same  VQ table of iteration 6 was  used  without 
path separation, the  resultant SNR would be 0.6 dB  lower. 

A comprehensive  comparison  of  several  coding  schemes  is 
summarized in Table  IV.  There  are  three different  models in 
this table,  namely, the quarter-plane  separable model,  the 
quarter-plane least-squares model, and  the  nonsymmetric half- ’ 

plane  least-squares  model.  All  the model coefficients were 
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TABLE  IV 
CODING  PERFORMANCE  ON  “LADY’S FACE” (1 BIT/PEL) 

I Coding Scheme I . Model I SNR (dB) ] 
QP. Separable I DPCM 

I .24.9 
QP, least-squares I 25.2 

I NSHP, least-squares I 25.5 
Predictive I QP, Separable 1 27.5 
Tree Code 

SBPVO 
26.3  NSHP, least-squares M-8, L-20 
26.3~~- QP, least-squares 

M-8: i-20 

30.9 QP, least-squares .M-8,L-18 
BTPVQ 

30.9 NSHP, least-squares 

’ \  
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Fig. 11. Test and coded images. (a) Original “lady’s  face.” (b) DPCM: 
SNR = 24.9 dB. (e)  Tree code: M = 8, L = 20, SNR = 27.5 dB. (d) 
SBPVQ: M = 8, L = 20, SNR = 30.9 dB. All coders use 1 bitlpixel 
quantizers. 

obtained  using  least-squares  parameter  estimation,  except for 
the  separable  model  where  the  horizontal  and  the  vertical 
correlation  coefficients  were  identified  separately.  These 
coefficients are summarized in Table 11. It is interesting  that 
the  best DPCM  coding  filter may  not be  the  best  tree  coding 
filter.  Further  discussion on the  selection of an  encoding  filter 
may  be  found in [26]. 

We  conclude  from  Table IV  that  the  predictive  tree  code 
with  a  scalar  quantizer  can  provide  about 2 dB SNR 
improvement  over  DPCM. An additional 3.4 dB  improvement 
is  achievable  using  SBPVQ  with  a 256 X 1  VQ  table. 
Furthermore,  this  improvement is visibly  striking as shown  in 
Fig.  11  and  especially in Fig. 12, an enlarged  version of Fig. 
11.  Since  SBPVQ  is  computationally  comparable  with a tree 
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Fig. 12. Enlarged images of Fig. 11. (a)-(d) Same as in Fig. 11. 

code, the coding  performance  is  doubled only at the price of an 
extra  VQ table  and some additional memory. 

B. BTPVQ 
This subsection  presents the results of three  separate 

simulations. First we present a  1  bit/pixel BTPVQ encoding 
using the 2-D search order that  has  been  discussed in Section 
111-B. Second, in order  to  justify the  usefulness of 2-D  search, 
a  block tree  PVQ  encoding with 1-D-like search  is presented 
for  comparison.  Third,  two 0.5 bit/pixel BTPVQ encodings 
with different block sizes  are  also presented. 

Again,  the “lady’s  face”  image  was the  training data. In the 
1  bit/pixel cases,  the block size was chosen  to  be 3 X 3. Of 
course,  one may  want to  have  larger  size blocks to take  fuller 
advantage of the dependence between  nearby  pixels. But the 
VQ table size gr;ows exponentially with the block size.  For 
instance,  a VQ  table  for a  3 X 3 block  contains 5 12 (= 23x3)  
vectors and  the one  for a 4 X 4 block  contains 65536 ( = 24x4)  
vectors. Hence, we  did  not  try  a  block size  larger than 3 X 3 
at the 1 bit rate. 

Because of the rectangular search region, the  encoding  filter 
support is restricted to-quarter-plane.  The model coefficients 
in all cases  are the  so-called  least-squares,  quarter-plane  filter 
which  has been given in Table 11. As  usual, the optimum  scalar 

tree  code provided the initial  values for the VQ  table.  The 
delay  length for  tree  coding was 2 blocks or 18 pixels; i.e., the 
encoder releases  the  first  block  when it reaches the  end of the 
second  block. 

The  2-D  search  ordering defined in Fig. 9 was used for the 
first experiment.  The bit allocation  pattern for this 1 bit/pixel 
code was (2,2,  2,  2, 1) bits per node. Table V  shows  the SNR 
results at each  iteration in the  design  phase. We started  with M 
= 4 and  then  increased  the search intensity. At iteration 10 
with M = 16, the coding  performance almost saturates.  The 
coded image SNR was compared with that of other schemes in 
Table  IV.  This  coding result is subjectively  and  numerically 
similar  to  those we have obtained  using SBPVQ.  This  also 
implies a 3.4 dB  improvement  over  tree  codes and  a 5.4 dB 
improvement over  DPCM.  The coded image  is  shown in Fig. 
13 and is  comparable  to  the  one obtained with SBPVQ.  Fig. 14 
shows  enlarged  portions of the images  of  Fig. 13. In 
comparison with SBPVQ in Section IV-A, the VQ table of this 
BTPVQ has  a larger  size with 1252 ( =  4 + 16 X 2 + 64 X ,3 
+ 256 X 2 + 512) members. But it does  not need a  register 
and does not have  to load  the  register for  every pixel. The 
entropy of this code is 7.03 bits for a  3 X 3  block or 0.78 bits 
per pixel on average..  Hence,  we could further reduce  the 
transmission  rate by using some  entropy  coding techniques. 
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r .  

TABLE V 
A 1 BIT BTPVQ  DESIGN (2-D SEARCH) 

Iteration 
1 
2 

4 
3 

6 
5 

7 
8 
9 

10 
11 

Search parameters I SNR (dB) I 
M - 4 .   L - 2 X 3 X 3  I 24.3 

Fig. 13. Coded images. (a) 0.5 bit  BTPVQ: M = 8, L = 2 x 4 x 4,4  x 4 
block,  SNR = 27.5 dB. (b) 1 bit  BTPVQ: M = 8, L = 2 x 3 x 3, 3 x 
3 block, SNR = 30.9 dB. 
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Fig. 14. Enlarged  images of Fig. 13. (a), (b)  Same as in Fig.  13. 
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TABLE VI 
A  1-BIT BTPVQ DESIGN (1-D-LIKE SEARCH) 

Iteration 
26.2 M- 4. L-2x3x3 1 
27.8 M- 4. L-2x3x3  2 

SNR (dB) Search parameters 

3 M- 4, L-2X3x3 28.5 
4 M- 4, L-2X3x3 28.7 
5 M- 8. L-2x3x3 

29.8 M- 8, L-2X3x3  8 
29.8 M- 8, L-2x3x3  7 
29.6 M- 8. L-2X3X3  6 
29.4 

- 

TABLE VII 
A,0.5 BIT BTPVQ DESIGN (3 X 3 BLOCK) 

M- 4, L-2X3~3 
M- 8, L - 2 ~ 3 ~ 3  

As a  second  simuiation  we  replaced the  2-D search order 
with the  conventional  1-D-like search;  i.e., inside  each  block 
the coder  scans  from left to right  horizontally and then 
advances  one  fow  after completing  the current  row.  Thus, the 
total search  order  for  the 3 X 3 block is 9 (rather than 5 as in 
the 2-D  search  case). A reasonable  bit  allocation  pattern for 
this case  is 1 bit per  node for. all tree  depths. All the other 
parameters in this  code  are the same  ‘as in the previous 
simulation. 

The iterative  design  results are listed in  Table  VI.  We 
observe that  the  best performance  is  28.7  dB  for M = 4 and 
29.8 dB  for M = 8.  These values are  lower thanmthose of the 
2-D  search  (Table V) by 1.6 dB and 1.1 dB  for the  cases M = 
4 and M = 8 ,  respectively. This  agrees. with the analysis in 
[20] and [26]. For a 2-D  search  region, the  redundancy 
introduced by a  1-D-like search  degrades the coding  perform- 
ance especially  at  very  low search intensities. 

As a final simulation, we  tried to  lower the  bit  rate further. 
Two 0.5 bitlpixel BTPVQ’s  were conducted  with  block  size 3 
X 3 and 4 X 4, respectively. Since  the  ,l-D-like  search  is 
inferior  for  BTPVQ, we used 2-D search schemes.  The  coding 
procedure in this  experiment  is exactly the  same  as in the  first 
experiment.  The only change  is  the bit  allocation  pattern. of  the 
code  tree.  It  is (1, 1, 1.5, 1, 0) bits  per  node  for 3 X 3, blocks 
and (1,2,2,   2,  1 , 0, 0) bits per node for.4 X 4 blocks;  In  other 
words,  the VQ table  would  contain 24  vectors  for 3 x 3 
blocks  and 256 vectors  for 4 X 4 blocks,  or equivalently, 0.51 
bitlpixel  and 0.5 bitlpixel on average  for these codes. 

The. numerical coding results of these two nearly 0.5 bit 
BTPVQ  are  shown in Tables VI1 and  VIII. The encoded image 
with 4 x 4  blocks  was  displayed in Fig. 13. An enlarged 
version is in Fig.  14.  Numerically, a 0.5 bit BTPVQ  is slightly 
better than a 1 bit ordinary  tree  code: Subjectively, the coded 
image of the BTPVQ  is  smoother,  but  it introduces  block-type 
defects into the  reproduced  picture. 

C. Robustness 
One potential concern  is  the sensitivity of the  VQ lookup 

table used in the coding. If a  picture other than the training one 
is encoded,  can we  still  obtain  the same improvement? One 
may expect  that a VQ table  designed for smooth images may 
not wprk well on a picture filled  with fine  texture. But  a  good 
codebook  should work reasonably well on a large variety of 
pictures with similar spatial  characteristics such  as tiuman 
faces  and  buildings. To test  the  robustness of  PVQ,  we applied 
the coder  designed  for the “lady’s  face”  to  an  image of a 
man’s face.  These  two pictures have  quite  different statistics as 
listed in Table IX. Their probability  densities  (histograms), 
plotted in Fig.  15,  are  also  quite  different, and  both are  quite 
non-Gaussian. Furthermore, although they are pictures of 

0.05 

0.04 

0.03 

0.02 

0.01 

0 

0.1 2 

o.io 

0.08 

0.06 

0.04 

0.02 

TABLE VI11 
A 0.5 BIT BTPVQ DESIGN (4 X 4 BLOCK) 

Iteration Scatch parameters SNR (dB) 

M- 4, L-2x4x4 
M- 4. L-2~4x4 
M- 4, L-2X4x4 26.7 
M- 8, L-2~4x4 27.4 

7  M-16, L-2x4x4 27.8 
6 M- 8, L-2x4x4 27.5 

TABLE IX 
STATISTICS OF TEST IMAGES 

- - - - P R O B ~ B I L I T Y   D ~ N S I T Y  O F  LADYIS FACE 
. . . . . . . . . NORMAL DENSITY  WITH  THE SAME 

MEAN AND VARIANCE 

I 
I t 

- - - -  I I I 1 1 1 3-7- 

PROBABILITY  DENSITY OF MAN’S FACE 
. . . . . . . . NORMAL DENSITY  WITH  THE SAME 

MEAN AND VARIANCE 

5 

O L  
123 255 

(b) 
Fig. 15. (a) Normalized histogram of “lady’s  face”  image (density 

domain). (b) Normalized histogram of “man’s  face” image (density 
domain). 
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TABLE X 
CODING  PERFORMANCE  ON “MAN’S FACE” (1 BITIPEL) 

Coding Scheme 

21.3 QP. least-squares ;_ DPCM 
26.9 QP, Separable ’ ’ 

SNR (dB) Model 

’ E z 2 e  , 1 QP. Separable ’ I ; 1 
M-8, L-20  QP. least-squares 
BTPVQ 

SBPVQ 
M-8, L-18 QP. least-squares 

M-8, L-20  NSHP.  least-sauares 
(from lady’s) 
BTPVQ 

QP, least-squares M-8, L-18 
‘ J  

32.5 
(from lady’s) I I 
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SNR = 26.9 dB. (c) Tree  code: M = 8, L = 20, SNR = 30.4 dB. (d) 
BTPVQ: M = 8, L = 2 x 3 x 3 ,  SNR = 32.5 dB. All coders use 1- bit/ 
pixel quantizers. 

human faces, the man’s one has stronger spatial  correlation 
and is relatively easy  to  compress.  The SNR of its ordinary 
predictive tree coded image is as high as 30 dB, which is hard 
to  achieve  for the “lady’s  face”  image. 

Both the SBPVQ and  the BTPVQ  derived  from the “lady’s 
face”  were applied to the  “man’s  face.”  We still  obtained  1.9 
dB and 2.1 SNR improvements in these  cases over the tree 

codes that were specifically  designed for  them.  These values 
were only about 1 dB  lower than the result of a BTPVQ 
designed  exclusively for the “man’s  face”  image.  The coding 
performances  of  several  schemes on the “man’s  face”  image 
are listed in Table X. Fig.  16  shows the  coded images of the 
man’s face. Substantial improvements  are visible in Fig. 17, 
which is  the  enlarged version of  Fig.  16. 
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Fig. 17. Enlarged images of Fig. 16. (a)-(d) Same  as in Fig. 16. 

V . DISCUSSION 
We have  presented several  coding  schemes which combine 

predictive tree  codes  and  vector  quantizers. Simulations  on 
real images  showed significant improvement using  these new 
techniques.  Roughly speaking, a  predictive VQ  can  double the 
coding  performance of a tree  code  at the 1 bit rate, or achieve 
about the same numerical  result  with  a  half-bit rate.  From  an 
implementation viewpoint,  PVQ has about the same computa- 
tional  complexity as  an  ordinary  tree  code. Although PVQ 
needs some  extra  storage;  due  to  the  advances of VLSI 
memory  devices,  this  factor would have a minor impact on the 
overall cost. Because of  the  use of the (M, L )  algorithm, this 
scheme  can be  implemented with the same basic  building 
blocks operating in parallel. This identical  block structure  is 
most desirable  for  VLSI  circuit layout. 

It has been shown by Gray et al. [24]  that the clustering 
design algorithm of VQ  converges  to,  at  least, a local optimum 
point; however,  the  convergence  property of PVQ  is difficult 
to  analyze  because the VQ lies  inside the  coder  loop and the 
quantization errors are  thus  correlated with  the VQ table. If the 
correlation between the  VQ  table and  prediction errors  is 

negligible  and if an  image  can  be truly  modeled by a  white 
noise driven  autoregressive  source,  the prediction errors  are 
then approximately  stationary  and ergodic when  the  quantiza- 
tion errors  are  quite small. This  returns  to  the  case in [24]- 
block ergodic and  stationary sources quantized by vector 
quantizers.  Of  course, the above  argument  is heuristic. A 
rigorous proof of  the  convergence of the PVQ  design  scheme 
has not been obtained.  Nevertheless, our simulations  indicate 
that  the PVQ  iterative  design  algorithms  are well-behaved on 
real-world image  data. 

A VQ  coding  process  is basically  a pattern matching 
technique as pointed out by Gersho and Cuperman  [27].  The 
source  vector  is  compared with all  the  codewords or patterns 
in the VQ  table,  and hopefully one of these  patterns can match 
the source  vector well. Therefore, if the  source  vectors of all 
the test images  have  similar  patterns, then  a “good”  VQ table 
which contains  almost all  these  patterns  should be robust. 
Indeed,  this is  true  for  PVQ.  When the low frequency 
components of images  are  removed by the  coding  filter,  the 
residual images  have  similar local features.  In  other  words, if 
the  residual images  are partitioned into blocks  with proper 
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sizes, these  blocks  can  be grouped into a few representative [23] Y.  Linde,  A. Buzo, and  R. M.  Gray,  “An  algorithm  for  vector 
patterns which represent flat .regions and edges with  various quantizer design,” IEEE Trans. Commun., vol. COM-28,  pp. 84-95, 
orientations,  positions, and widths.  This may explain the Jan. 1980. 
robustness of a well-designed PVQ that we obtained  in  our [24l R. M.  Gray. J.  C. Kieffer,  and  Y.  Linde, “Locally optimal block 
simulations. 

The  coding algorithms described in  the previous  sections [251 R, M, Gray and y, Linde, ‘cVector quantizers and predictive 
can be  further modified  by  using adaptive  predictors. Since a quantizers for Gauss-Markov sources,’’ IEEE Trans. Commun., vol. 
real-world  image may be modeled as combinations of local COM-30,  pp. 381-389, Feb. 1982. 
edge and nonedge  regions, a space  varying  model  seems [26] H.-M. Hang,  “Predictive coding of images,” Doctoral thesis, Dep. 
appropriate for picture coding.  The concept of multiple-model Elec.,  Comput.,  Syst.  Eng.,  RensselaerPolytech.  Inst.,  Troy,  NY, July 
for pictures is borrowed  from [28 ] ,  [29]. This multiple-mode! 1984. 
concept has been found  useful in  image filtering [28] an$:;r;;.[27] A.  Gersho  and v .  Cuperman, ‘‘Vector quantization: A Pattern- 

adaptive  prediction DpCM coding [30]. a future we ’ ! 
matching technique for  speech  coding,” IEEE CkTImun. Mag., PP. 

report On improved pvQ performance by [28] H. Kaufman, J.  W.  Woods,  V.  K.  Ingle, R. Mediavilla, and A. 
15-21, Dec.  1983. 

multiple-model  prediction. Radpour, “Recursive image estimation: A multiple model approach,” 

quantizer‘&esign,” J. Inform.  Contr., vol. 45,  pp. 178-198, May 
1980. 
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