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Near Merging of Paths in Suboptimal Tree Searching 

HSUEH - MING HANG AND JOHN w. WOODS, MEMBER, IEEE 

Abstract-The near merging of paths in tree searching is explored. This 
near merging can degrade coding performance when a suboptimal search 
algorithm is used. The problem is first identified and then a feasible 
solution is presented. Some examples from image source coding using the 
(M, L) algorithm are given. 

I. INTRODUCTION 

Because of their easy implementation and near optimum per- 
formance, instrumentable tree codes have been the object of 
rather extensive study. The encoding of one-dimensional discrete 
memoryless sources and speech signals was successfully carried 
out by Anderson and his co-workers [l]-[4]. Along the same line, 
Modestino et al. obtained very good results on two-dimensional 
image coding [5], [6] using a regenerative search scheme [7] to be 
described below. The conventional one-dimensional search 
scheme is nonregenerative; this saves considerable computation 
but is afflicted by a new phenomenon that we call “near merging.” 

It was generally believed that tree coding performance might 
be improved by increasing the search length. As will be shown 
below, this assertion is not true if the encoder is a stable autore- 
gressive moving-average (ARMA) filter and the search is subopti- 
mal. Furthermore, if a conventional (M, L) search is used, 
increasing the search length can degrade coding performance 
significantly. This degradation comes from the near merging of 
paths which will be identified and discussed in Section III. 
Section II summarizes the basic definitions of tree coding and the 
(M, L) algorithm. A nonregenerative image coding example which 
demonstrates the effect of near merging and the means to avoid it 
is shown in Section IV. 

II. TREE CODING 

A tree code is a code Whose words are generated by a regular 
tree structure having r symbols on each branch and b branches 
out of each node. The codewords are formed by concatenating 
the symbols encountered along each path in the tree. If the paths 
are all L branches long, we say the tree has depth or delay L. A 
tree code of depth L with b branches per node and r symbols 
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per branch contains codewords of length n = Lr and rate R = 
(log b)/r nats per source symbol [9, ch. 61. The range of the 
reproducing symbols can be either discrete or continuous. A 
sampled image will be represented by a two-dimensional array 
s( m, n) whose value corresponds to the gray level of pixel (m, n), 
so the continuous case is of interest here. 

It was proved by Jelinek that for a discrete-time memoryless 
source and single-letter fidelity criteria, the R (0) performance 
limit can be approached arbitrarily closely by tree codes of 
sufficiently large tree depth [8], [9 ch. 61. However the theorem is 
proved using randomly generated tree codes, which are not 
realistically instrumentable. The implementation problem for tree 
coding can be solved by using a structured path generator such as 
an ARMA filter. The conventional trellis or convolutional en- 
coder is a special case of an ARMA filter, which has only an MA 
portion and operates on a finite range of input values. We can 
also use an ARMA filter together with real number operations to 
encode continuous speech or image waveforms [3]-[5]. 

Various code search techniques have been invented for tree 
encoding [lo]. As one would expect, the exhaustive search scheme, 
which compares every possible path in the tree with the source 
signal, has the best performance. However, the computation 
associated with an exhaustive search grows exponentially with 
search depth and, hence, it is not instrumentable in practice. 
Many other search algorithms reduce the computations substan- 
tially; for example, the stack algorithm [2], the 2-cycle algorithm 
[ll], and the (M, L) algorithm [l]. The (M, L) algorithm is of 
value because of its reasonably good performance and mod- 
erately strong properties in all respects [2], [lo]. Therefore, a 
modified version of the (M, L) algorithm is used in this corre- 
spondence. 

The (M, L) algorithm is normally applied using a nonregenera- 
tive search. A nonregenerative search algorithm is characterized 
by not regrowing the code tree after each branch release. The new 
branches are just concatenated onto the old tree. In contrast, a 
regenerative search algorithm regrows the entire code tree, back 
to the released branch, at each new data point. 

The operation of the conventional nonregenerative (M, L) 
search is as follows. The encoder views all the branches it will 
ever view at a given tree-level before advancing any further into 
the tree. The M best paths at each level are kept according to 
their associated cumulative distortions. Then one selects the next 
best M branches stemming from the current retained branches. 
After depth L is reached, the level-one branch of the best 
surviving path is released. Then the new branches are extended 
from the surviving paths whose root branch is the released 
branch. The tree thus advances to a new tree level, and the 
level-two branch of the tree becomes the new released branch. 

The regenerative (M, L) search still follows the (M, L) algo- 
rithm rules in the growing of the tree, i.e., M paths are retained 
at each tree-level and the decision is made at the depth L. 
However, the entire code tree has to be reconstructed repetitively 
for every released branch in the regenerative search. If the search 
is exhaustive, the nonregenerative scheme will give the same 
results as the regenerative one; otherwise it may not. 

III. NEAR - MERGING OF PATHS 

A general ARMA filter can be described by a recursive dif- 
ference equation, 

s(k) = i ci(k)s(k i i) + i d,(k)u(k -j). (1) 
i=i j=l 

It is well-known that the finite discrete-valued convolutional 
encoder displays the path merging phenomenon, that is the paths 
in the tree can merge after a certain delay [12], [13]. This 
phenomenon takes place because the input to the encoder is a 
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finite field. Consequently, the number of possible branches at 
each tree level is fixed, and the tree representation can be reduced 
to the trellis representation. However, if a real-valued ARh4A 
filter is under consideration, the values of the encoder states are 
real and distinct for nontrivial cases, and thus the number of 
possible states becomes infinite. Nevertheless, a “near merging” 
phenomenon, similar to that in convolutional codes, also happens 
to the real-valued ARMA encoder if certain conditions are satis- 
fied. 

Although a real-valued ARMA filter has an infinite number of 
possible states, the outputs are bounded for a bounded-input 
bounded-output (BIBO) stable filter. An ARMA filter is thus a 
bounded operator which maps a bounded set U (i.e., the range of 
inputs) to another bounded set S (i.e., the range of outputs). 
Since the sets U and S are finite dimensional and all valid norms 
in finite-dimensional spaces are equivalent [14], the boundedness 
in the above statement can thereby be defined using any specific 
norm. If all possible output sequences of an ARMA filter are 
distinct in any finite time interval, then the number of branches 
(outputs) at a tree level increases exponentially in time. As a 
consequence, the outputs (i.e., the tree branches) become dense in 
a subset of S, so that the distance (norm) between two nearest 
branches becomes increasingly small as the tree grows. 

The Shannon source coding theory asserts that the minimum 
possible distortion of a well-defined source at a fixed coding rate 
R has to be greater than the distortion rate function D(R) [9]. If 
the distortion difference between two outputs (coded values) is c, 
which is much less than D(R), there is no need to distinguish 
between these two branches since they give essentially the same 
distortion. Hence we say these two branches are c-indistinguish- 
able. 

The above definition not only depends on the values of two 
branches in the code tree, but also involves the source sequence. 
If a single-letter distortion is of concern, and the distortion 
measure satisfies the norm criteria [14], then the above definition 
can be replaced by the following definition. 

Definition: If the norm (induced from the distortion measure 
d) of the difference between two branches is less than e, they are 
called relative c-indistinguishable. 

It is easy to see that relative r-indistinguishability is stronger 
than e-indistinguishability. Indeed, consider two branches s* = 
(si, s:; . . ,a$) and s2 = (s;,s;; . . ,s:) and a source sequence 
24 = (u*,u*;.., u,)); the distortions associated with branches 
s1,s2 are C]sf - u,] and C]s,? - ai]. The difference of distortion 
between s1 and s2 is 

I c { ISI’ - $1). 
i=l 

The right-hand side of the above expression is the distortion of 
the difference of s1 and s2. Therefore relative e-indistinguishabil- 
ity implies e-indistinguishability. 

If two branches are relative e-indistinguishable, they are “al- 
most the same” and hence we only have to evaluate one of them 
in the search process. This can be interpreted geometrically. The 
space S is partitioned into c-neighborhoods and the branches 
within one neighborhood can be regarded as the same, therefore 
the distortion associated with that neighborhood can be com- 
puted by simply using one representative branch in it. In a long 
tree, many branches may cluster in one neighborhood and, thus, 
we may reduce the computations greatly by considering the 
representative branches only. 

Nevertheless, two tree paths may be e-indistinguishable at a 
certain tree level and have very different succeeding branches in 
the future. The coding performance lies in the global behavior of 
the path, thus neither one of the above branches can necessarily 
be neglected. To drop the e-indistinguishable branches, some 

further restrictions have to be introduced. Two trees are said to 
be relative c-indistinguishable if for any path in one tree, we can 
find a path in the second tree such that the branches on these two 
selected paths are relative e-indistinguishable. Two paths in a 
tree code are called relative c-merged at tree level J, if the trees 
stemming from these two paths are relative e-indistinguishable. 
The path generator has the relative r-merging property, if when 
the two paths generated by this path generator are relative 
e-indistinguishable at level J, then they are also (relative) e-merged 
at level J. 

Again, relative e-merging implies r-merging if the distortion 
measure is a valid norm. In light of the above definitions, two 
paths are effectively “ the same” after level J if they are e-merged 
at level J, and the average distortion difference between these 
two paths is less than z/r per symbol after level J. Once we can 
show that the path generator has the relative r-merging property, 
we can drop the worse of two branches whenever they are relative 
r-indistinguishable, and the final result is essentially unaffected. 

To illustrate the use of the e-merging property, consider an 
e-merging path generator together with the (M, L) search algo- 
rithm. Since the M paths retained by the (M, L) algorithm are 
all good ones, it is likely that some of them are e-merged at a 
certain level. If the merged paths are kept in the tree, they will 
result in similar distortions eventually. However, the (M, L) 
algorithm’s ability to explore a path of initially high distortion 
but lower accumulated distortion at a later part of the tree, is 
destroyed by this merging phenomenon. In order to remedy this, 
a certain path separation criterion should be applied to the path 
generating procedure. 

The requirement of a relative c-merging path generator is very 
strong. However, some practical image tree coding schemes do 
possess the e-merging property as shown in Section IV. This 
property can be extended to a larger class of path generators by 
relaxing the definition of c-merging. For example, the zero input 
response of an asymptotically stable ARMA filter approaches 
zero with arbitrary finite initial conditions. Hence the tree codes 
generated by this path generator still suffer from the near merg- 
ing effect in the long run. 

IV. SOME EXPERIMENTS IN IMAGE CODING 

The tree search schemes used for one-dimensional signals can 
be extended directly to images. The tree search order is simply 
defined to be the row-by-row scanning order and, thus, a one- 
dimensional-like tree search can be formulated as illustrated in 
Fig. 1. The mean value of the image is shifted to zero before 
processing and the boundaries used by the path generator are 
assumed to be fixed at zero. Following the ARMA filter assump- 
tion, the path generator of an image tree encoder can be de- 
scribed by 

s(m,n) = c cljs(m - i,n -j) + c diju(m - i,n -j) 
al,+ %+ 

(2) 
where 

u( m, n) assumes a finite number of discrete values; 
s(m, n> 
.+Z+ 

is the reproduced image intensity; 
is a subset of the nonsymmetric half-plane which 
excludes the origin; and 
is another subset of the nonsymmetric half-plane 
which includes the origin. 

We can either use a regenerative scheme which regrows the 
entire tree after releasing each data point, or a nonregenerative 
scheme which attaches new branches to the old tree. The nonre- 
generative scheme has much higher computational efficiency, by 
a factor of the delay length L on the average. Consider using the 
nonregenerative (M, L) search for image source coding. A popu- 
lar image model which has a compact filter support (Fig. 2) is 
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n i------? 

I 
Fig. 1. Geometry of one-dimensional-like tree search. 

Fig. 2. Compact filter support for simulation. 

used [5]. The difference e(m, n) between any two branches, 
s’(m, n) and s2(m, n), in the code tree is 

e(m,n) =sl(m,n) -s2(m,n) 

= C1&s’(rn - 1,n) -?(?rl - l,n)] 

+c,,,[sl(m,n - 1) -s2(m,n - l)] 

+ql[sl(m - 1,n - 1) -s2(m - 1,n - l)] 

+[u’(m,n) - u2(m,n)] 

If the search length is less than one line, then the points (m, n - 1) 
and (m - 1, n - 1) in (3) are fixed previously released data. 
Hence the error equation can be reduced to 

e(m,n) = cIO[s’(m - 1,n) -s2(m - l,n>] 

+d(m,n) - u2(m,n) 

=cloe(m-l,n)+[u’(m,n)-u2(m,n)]. (4) 

This is clearly a relative e-merging path generator for ]cia] < 1, 
since u1 and u2 would be selected as the same for purposes of 
merging. 

In case the search length is longer than one line, then the 
global state, i.e., a whole line in this example, rather than just the 
local state has tr, be considered. The error function e( m, n) in (3) 
is no longer monotone decreasing as in (4). However, if the 
encoding filter is two-dimensional asymptotically stable [15], we 
could estimate the peak of transient response due to initial 
conditions, and then select E’ such that the error in (3) is 
bounded by e for the global initial conditions less than c’. Hence 
the path generator still possesses the near merging property. Since 
one row of an ordinary image is fairly long (more than 250 pixels 
per line), it is observed that the paths merge before reaching the 
second search line for a reasonably large M in the (M, L) 
algorithm. The above analysis can also be extended to an encod- 
ing filter which has larger support than Fig. 2, and by considering 
the global state similar conclusions are obtained. 

TABLE I 
ESTIMATEDVERTICALANDHORIZONTALCORRFLATION 

COEFFICIENTSFORTESTIMAGE 

Vertical Correlation 
0.973 

Horizontal Correlation 
0.977 

TABLE II 
OPTIMIZEDPERFORMANCE* (dB) OFNONREGENERATIVE 

SEARCHCODINGATDIFFERENTPARAMETERS 

*The optimum SNR is subject to 0.1 or 0.2 dB deviation. 
-Not applicable or not simulated. 

Examples 
The simulations used a 256 X 256 pixel image having &bit 

gray scale. The image model was borrowed from [5], a 1 x 1 
order quarter plane, separable model The model coefficients 
were obtained by least square fit to the vertical and the horizontal 
correlation coefficients [5], which are listed in Table I. Two-level 
or l-bit quantized inputs and square error distortion measure are 
used throughout this experiment. It can be expected that as M 
and L vary, the quantizer step size (output level spacing) should 
be adjusted accordingly. The step size in this experiment was 
selected to be optimal for the test image. Results are summarized 
in Table II. The SNR is the ratio of the coded image variance to 
the distortion. Conventional DPCM is equivalent to tree coding 
with a delay L = 1 and M = 1. 

Fig. 3 is a plot of signal-to-noise ratio (SNR) versus the 
quantization step size for the case M = 2. The horizontal coordi- 
nate is normalized by the standard deviation of the image model 
input which was obtained from the model identification process. 
It can be inferred from these curves that the optimum quanti- 
zation step size cannot be evaluated precisely. The reasons may 
be partly due to the nonlinearity of the encoder at low rates and 
partly to the inhomogeneity of the image. Consequently, a devia- 
tion of 0.1 or 0.2 dB on SNR is not significant in this kind of 
experiment. 

If the coding algorithm is conducted without deletion of near- 
merged paths, the performance goes down as the delay length L 
increases. This degradation is clearly seen from the first column 
of Table II, and can also be observed in Fig. 3. It may be 
improved a little for small L by increasing M, but the perfor- 
mance decreases rapidly for large L. This comes from the fact 
that the retained M paths are near merged after long delays, and 
thus these M paths are effectively one path. 

A simple and effective path separation criterion can be used to 
eliminate near merging for this example. We force the branches 
retained in the search to be THF. Q apart, where THF is the 
separation threshold factor and Q is the quantization step size. 
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Fig. 3. SNR versus quantization step size. 

Because the error (4) depends only on the most recent branch in 
the tree, two current nearby branches will lead to two near-merged 
paths in the future without referring to the past history. Therefore 
this criterion applies only on the current tree branches rather 
than the whole paths. If it is impossible to get M branches with 
distance ZXF. Q between them, this algorithm will select as 
much as it can and then pick the branches with the least accu- 
mulated distortions among the rest. Significant SNR improve- 
ments are obtained by using this separation technique as shown 
in Table II. It is interesting that the coding performance is quite 
insensitive to the THF value. 

Little SNR improvement is obtained by increasing M from 4 
to 8. As a consequence, we may suspect that the performance 
saturates around M = 8, L = 40, and THF = 0.2. The original 
test image and some reconstructed images are shown in Fig. 4. 
For easy comparison, parts of Fig. 4 are enlarged and displayed 
in Fig. 5. It can be observed from these pictures that tree coding 
can offer visible improvements over DPCM. 

To compare with the nonregenerative (M, L) scheme, several 
simulations using the regenerative (M, L) search were tried for 
M = 2, which are listed in Table III. Increasing the delay L in 
the regenerative search does not change the results much, as we 
expect, since the near-merged paths give us essentially the same 
distortion. The path separation technique can still provide some 
SNR improvement. 

Table IV shows the number of branches calculated for some 
selected simulations. These numbers represent the computational 

complexity of various schemes and parameters. The regenerative 
algorithm requires much more computation than the nonregener- 
ative ones. The average and the variance of the search length for 
both regenerative and nonregenerative methods are shown in 
Table V. They effectively measure the required storage size. These 
values were calculated from the minimum length of the tree at 
which the released branch can be decided without ambiguity. It 
may be concluded from this table that the path separation 
reduces the maximum search length and hence allows smaller 
storage. This effect can be explained by the following. If the path 
separation is not included, the merged paths stemming from 
distinct branches at the released point would continue growing 
without end because the distortions of merged paths are com- 
parable. Therefore, the decision on the released branch cannot be 
made until the search length L is reached. On the other hand, 
when the path separation criterion is used, some of merged paths 
are dropped which can result in an unambiguous decision at an 
earlier point in the search process. 

V. DISCUSSION 

The near merging of paths in tree searching and one feasible 
solution to it are brought out in this correspondence. The effect 
of near merging on image coding and the improvement using 
path separation are illustrated by experiments. If an asymptoti- 
cally stable ARMA path generator is used, the near merging 
phenomenon occurs in the (M, L) tree search for small M and 
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Fig. 4. Test images. (a) Original test image. (b) DPCM: SNR = 15.7 dB. (c) Tree coding: M = 2, L = 10, THF = 0.1, SNR = 18.0 
dB. (d) Tree coding: M = 8, L = 40, THF = 0.2, SNR = 19.2 dB. 

Fig. 5. Enlarged segments of images of Fig. 4 
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Fig. 5. (Continued) 

TABLE III 
OPTIMIZED PERFORMANCE* (dB) OF REGENERATIVE 

SEARCH CODING AT DIFFERENT PARAMETERS 

Search Length No Path 
M L Separation THF = 0.1 

5 17.9 18.0 
I I 

2 10 17.8 17.9 
40 17.8 18.0 

*The optimum SNR is subject to 0.1 or 0.2 dB deviation. 

TABLE IV 
NUMBER OF BRANCH COMPUTATIONS 

Scheme 

Nonregenerative 

Regenerative 

large L. In the previous research on tree coding the value of M is 
comparable with L, therefore, the near merging effect did not 
appear. In the image coding case, one may want to use very long 
delay to encompass nearby image pixels in succeeding lines, and 
the merged paths due to this long search length can distort the 
results. Other suboptimal search schemes should have similar 
characteristics. 

The above experiment was performed using a simple AR 
encoding filter and a suboptimal search. It does not seem helpful 
to use a search length greater than several pixels. In comparison 
to Modestino et al. [5], we did not use a smoothing filter nor an 
optimal rate-distortion derived filter. Although the analysis of the 
near merging of paths would be more difficult in these cases, we 
believe that our results would remain qualitatively the same. 

Scheme 

Nonregenerative 

TABLE V 
MEAN AND VARIANCE OF SEARCH LENGTH 

Regenerative 

-Not applicable. 
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Comments on “On a Direct Method of Analysis and 
Synthesis of the SPRT” 

GIOVANNI CORSINI, ENZO DALLE MESE, MEMBER,  IEEE, 
GIOVANNI MARCHETTI.  AND LUCIO VERRAZZANI 

Abstract-In this brief communication, some comments on  the above 
paper  are made.’ The efficiency of the method of analysis proposed by 
Vrana and  other methods available in literature are compared.  

I. INTRODUCTION 

(1) 

al(w) =  1” P,(U - 4H,) do  + /;&)P~(u - 4Hd h, 
--co 

(2) 

JG(wlH,) =  1  + jd4-“ilbIH,)~z(~ - wlH,) du, (3) 

We  have read with great interest the above paperi; the argu- and 
ment treated by Vrana has a great practical relevance. Applica- 
tions of the sequential probability ratio test (SPRT) are found for 
example, in digital communications and radar target detection. 

M,(wlHj) =  1  + kil($)JB?&(u~H,)pz(u - wlH,)du 
s=l 

An exact analysis of the performance of the SPRT is very 
desirable. The method proposed by Vrana is based on the recur- +~AM,(W,)~z(u - WC) do, (4) 
sive calculation of the risk function of a sequential a  posteriori 
probability test @APT), which is equivalent to the SPRT to be for i = LO, k = 2,3, . . ; B < w < A, and where M,(wlHi) is 
analyzed. The performance measures considered in Vrana’s paper’ the conditioned jth moment of the random variable N. The 
are the probabilities of both. types of errors, aa, (pi, and the parameters of interest are obtained from (l), (4) by setting 
average sample numbers (ASN), E, and E,, conditioned respec- w = 0. Eqs. (l), (4) are Fredholm integral equations of the second 
tively on the two alternative hypotheses, Ha and Hi. Some kind and their numerical solution does not present any difficulty. 
general remarks are Furthermore, they are quite general, and do not depend on any 

I) Other parameters, in addition to those calculated by Vrana, 
specified model of p,( ‘IH,). This method has been applied suc- 

a 
are important in order to fully specify the test characteris- 

cessfully to evaluate the performance measures of the SPRT used 

tics. They are the operating characteristic function (OCF) 
in radar target detection [2], [6] and in communication systems 

and the moments of the random variable “length of the 
[51. 

The second method was suggested by Rozanov [4], who devel- 
test” N. Moreover, the knowledge of the probability density 
function (pdf) of the test statistic Z, at stage k ( usually 

oped a recursive method to calculate the pdf of Z, at each stage 

equal to the logarithm of the likelihood ratio) is required for 
k. It is obvious that this knowledge enables us to compute all the 

specific application. 
parameters of interest of the SPRT. By observing that Z, = Z,- i 
+ zk, the pdf of Z, is obtained through the convolution integral 
of the pdf’s of Zkel, and zk. The main problem arising in the 
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